Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T thêm điều kiện nữa là x, y, z nguyên nhé
Ta có: 2x2 + 3y2 + 2z2 – 4xy + 2xz – 20 = 0 (1) Vì x, y, z €N* nên từ (1) suy ra y là số chẵn
Đặt y = 2k (k €N*),
Thay vào (1):
2x2 + 12k2 + 2z2 – 8xk + 2xz – 20 = 0
<=> x2 + 6k2 + z2 – 4xk + xz – 10 = 0
<=> x2 – x(4k – z) + (6k2 + z2 – 10) = 0 (2)
Xem (2) là phương trình bậc hai theo ẩn x.
Ta có: ∆ = (4k – z)2 – 4(6k2 + z2 – 10)
= 16k2 – 8kz + z2 – 24k2 – 4z2 + 40
= - 8k2 – 8kz – 3z2 + 40
Nếu k \(\ge\)2, thì do z \(\ge\)1 suy ra < 0
=> phương trình (2) vô nghiệm. Do đó k = 1,
=> y = 2. Thay k = 1 vào ∆= - 8 – 8z – 3z2 + 40 = - 3z2 – 8z + 32
Nếu z \(\ge\)3 thì ∆ < 0: phương trình (2) vô nghiệm.
Do đó z = 1, hoặc 2.
Nếu z = 1 thì ∆ = - 3 – 8 + 32 = 21: không chính phương, suy ra phương trình (2) không có nghiệm nguyên.
Do đó z = 2. Thay z = 2, k = 1 vào phương trình (2)
x2 – 2x + (6 + 4 – 10) = 0
<=> x2 – 2x = 0
<=> x(x – 2) = 0
x = 2 (x > 0)
Suy ra x = y = z = 2. Vậy tam giác đã cho là tam giác đều.
Ta có :
\(2x^2 + 3y^2 + 2z^2 – 4xy + 2xz – 20 = 0\) (1)
Vì \(x,y,z \in N^* \) nên từ (1) => \(y\) là số chẵn
Đặt \(y=2k ( k \in N^*)\) , thay \(y=2k \) vào (1) :
\(2x^2 +12k^2 +2z^2 -8xk +2xz-20=0\)
\(<=> x^2 +6k^2 +z^2 -4xk +xz-10=0\)
\(<=> x^2 - x(4k-z) + ( 6k^2+z^2-10)=0 (2)\)
Giả sử (2) là phương trình bậc hai theo ẩn x
Ta có : \(\bigtriangleup = (4k-z)^2 -4(6k^2+z^2-10)\)
= \(16k^2-8kz +Z^2+24k^2-4z^2+40 \)
= \(-8k^2 -8kz -3z^2+40\)
Nếu \(k\in2\) thì \(z\in1\) => \(\bigtriangleup <0\) => phương trình (2) vô nghiệm
Do đó k =1 => y=2
Thay k=1 vào biệt thức \(\bigtriangleup : \)
\(\bigtriangleup = -8-8z -3z^2+40\)
\(= -3z^2 -8z-32\)
Nếu \(z \in 3 \) thì \(\bigtriangleup <0\) => phương trình (2) vô nghiệm
Do đó : \(z=1 \) hoặc \(z=2\)
Nếu \(z=1 \) thì \(\bigtriangleup = -3-8+32 =21\) không chính phương => phương trình (2) không có nghiệm nguyên
Do đó \(z=2\)
Thay \(z=2 ; k=1\) vào phương trình (2) :
\(x^2-2x+(6+4-10)=0\)
<=> \(x^2-2x=0\)
\(<=> x(x-2 )=0\)
=> \(\begin{cases} x=0\\ x-2=0 \end{cases}\) <=> \(\begin{cases} x=0\\ x=2 \end{cases}\) => \(x=2\)
=> \(x=y=z=2\)
Vậy tam giác đã cho là tam giác đều(đpcm)
mấy cái số 2 đứng sau ẩn là "mũ 2" nha. Xin lỗi mình quên chỉnh :)
Thêm 3 zô mỗi zế , quy đồng mẫu thức rồi suy ra
\(\left(y+z-x\right)\left(x+z-y\right)\left(x+y-z\right)>0\)
từ đây suy ra hai trong ba thừa số của tích mang dấu âm , thừa số còn lại mang dấu dương , hoặc cả thừa số mang dâu dương
Nếu 2 trong 3 thừa số mang dấu âm , ko mất tính tổng quát ta giả sử
\(y+z-x< 0\left(and\right)z+x-y< 0\)khi đó \(2z< 0\Rightarrow z< 0\)
ko xảy ra zì z là độ dài đoạn thẳng nên z>0
Zậy phải có
\(y+z-x>0;z+x-y>0\left(and\right)x+y-z>0\)
suy ra
y+z>x ; z+x>y zà ?+y>z
ba số dương x,y ,z thỏa mãn bất đẳng thức nên là số đo độ dài cạnh của 1 tam giác
đây là cách làm còn trình bày nếu bạn cần mình có thể làm cho cậu
Từ : \(\frac{x^2+y^2-z^2}{2xy}+\frac{y^2+z^2-x^2}{2yz}+\frac{x^2+z^2-y^2}{2xz}>1\)
=> (y+z−x)(x+z−y)(x+y−z)>0
=> 2 trong 3 thừa số mang dấu âm, còn lại mang dấu dương, hoặc cả 3 thừa số đều mang dấu dương
Gỉa sử y+z-x <0 và z+x-y< 0 => z < 0
=> Loại
=> Cả 3 thừa số đều mang dấu dương
\(\Rightarrow y+z>x;z+x>y;x+y>z\)
=>
là độ dài 3 cạnh ( vì thỏa mãn bđt
\(VT=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\)
\(VT\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
\(\Rightarrow\) Tam giác là tam giác đều
Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c
=> p - a = (a + b + c)/2 - a
=> p - a = (b + c + a - 2a)/2
=> p - a = (b + c - a)/2
=> 2(p - a) = b + c - a (1)
Tương tự ta chứng minh được:
2(p - b) = a + c - b (2)
2(p - c) = a + b - c (3)
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b)
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ]
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ]
Bây giờ ta đã đưa bài toán về chứng minh
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Ta có: (x - y)² ≥ 0
<=> x² - 2xy + y² ≥ 0
<=> x² - 2xy + y² + 4xy ≥ 4xy
<=> x² + 2xy + y² ≥ 4xy
<=> (x + y)² ≥ 4xy
=> với x + y ≠ 0 và xy ≠ 0
=> (x + y)²/(x+ y) ≥ 4xy/(x + y)
=> (x + y) ≥ 4xy/(x + y)
=> (x + y)/xy ≥ (4xy)/[xy(x + y)]
=> 1/x + 1/y ≥ 4/(x + y) (*)
Áp dụng (*) với x = p - a và y = p - b ta được:
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4)
Chứng minh tương tự ta được:
1/(p - a) + 1/(p - c) ≥ 4/b (5)
1/(p - b) + 1/(p - c) ≥ 4/a (6)
Cộng vế với vế của (4);(5) và (6) ta được:
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c)
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c)
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) )
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Dấu bằng xảy ra <=> a = b = c.
Câu 1:
Diện tích tam giác đều cạnh 3cm là:
\(S=\dfrac{3^2\cdot\sqrt{3}}{4}=\dfrac{9\sqrt{3}}{4}\left(cm^2\right)\)
Câu 2:
Nửa chu vi tam giác là:
\(P=\dfrac{C}{2}=\dfrac{8+8+6}{2}=\dfrac{22}{2}=11\left(cm\right)\)
Diện tích tam giác là:
\(S=\sqrt{P\cdot\left(P-A\right)\cdot\left(P-B\right)\cdot\left(P-C\right)}=\sqrt{11\cdot\left(11-8\right)^2\cdot\left(11-6\right)}\)
\(=\sqrt{11\cdot5\cdot9}=3\sqrt{55}\left(cm^2\right)\)