Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`1,`
S một đáy của hình lập phương đó là:
`144 \div 4 = 36 (m^2)`
Độ dài cạnh của hình lập phương đó là:
\(\sqrt {36} = 6(m)\)
Vậy, độ dài cạnh của hình lập phương đó là `6 m`.
`2,`
P đáy của hình hộp chữ nhật đó là:
`2(5+6)=2*11=22(m^2)`
Chiều cao của hình hộp chữ nhật đó là:
`154 \div 22=7 (m)`
Vậy, độ dài của chiều cao hình hộp chữ nhật đó là `7m.`
Gọi 3 cạnh của hình hộp chữ nhật lần lượt là: x; y; z ( cm; >0)
Diện tích 3 mặt lần lượt là: xy ; yz; xz ( cm^2)
( chú ý hình hộp chữ chữ nhật có 4 cạnh bằng x; 4 cạnh =y; 4 cạnh =z )
Theo bài ra ta có: \(\hept{\begin{cases}\frac{xy}{2}=\frac{yz}{3}=\frac{zx}{5}\left(1\right)\\4x+4y+4z=248\left(2\right)\end{cases}}\)
(1) => \(\frac{x}{2}=\frac{z}{3};\frac{y}{3}=\frac{x}{5}\)=> \(\frac{x}{10}=\frac{z}{15}=\frac{y}{6}\)
(2) => \(x+y+z=62\)
Tự làm tiếp nhé!
Gọi hai cạnh góc vuông là x và y.
ta có:
x/4 = y/3
x2 + y2 = 202 (*)
Đặt x/4 = y/3 = t
⇒ x = 4 . t và y = 3 . t
Thay x, y vào (*) ta có:
(4 . t)2 + (3 . t)2 = 202
[42 + 32] . t2 = 202
t2 = 16
⇒ t = 4
⇒ x = 4 . 4 = 16 và y = 3 . 4 = 12
Gọi tam giác cần tìm là ABC có AB và AC là 2 cạnh góc vuông còn BC là cạnh huyền. Xét tam giác vuông ABC có : \(AB^2+AC^2=BC^2\)(định lí Py-ta-go) \(AB^2+AC^2=13^2=169\) Áp dụng tính chất dãy tỉ số bằng nhau ta có :\(\frac{AB^2}{12^2}=\frac{AC^2}{5^2}=\frac{AB^2+AC^2}{12^2+5^2}=\frac{169}{169}=1\) =>AB=144 AC=25
sau khi tính ra AB=144 ; AC=25
thì phải tìm căn bậc 2 của nó
ĐÁp án đúng là AB=12; AC=5
a: ABCD là hình vuông
=>AB=BC=CD=DA và \(\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{ADC}=90^0\) và AC là phân giác của \(\widehat{DAB}\) và DB là phân giác của góc ADC; BD là phân giác của góc ABC
AC là phân giác của góc DAB
=>\(\widehat{CAB}=\dfrac{1}{2}\widehat{DAB}=\dfrac{1}{2}\cdot90^0=45^0\)
AEBF là hình vuông
=>AB là phân giác của \(\widehat{FAE}\) và \(\widehat{FAE}=90^0\)
=>\(\widehat{BAE}=\dfrac{1}{2}\cdot\widehat{EAF}=45^0\)
\(\widehat{BAE}=45^0\)
\(\widehat{BAC}=45^0\)
Do đó: \(\widehat{BAE}=\widehat{BAC}=45^0\)
=>AE và AC là hai tia trùng nhau
=>A,E,C thẳng hàng
BD là phân giác của góc ABC
=>\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=\dfrac{90^0}{2}=45^0\)
AEBF là hình vuông
=>BA là phân giác của góc EBF
=>\(\widehat{ABE}=\dfrac{1}{2}\cdot\widehat{FBE}=45^0\)
=>\(\widehat{ABE}=\widehat{ABD}\)
=>BE,BD là hai tia trùng nhau
=>B,E,D thẳng hàng
B,E,D thẳng hàng
A,E,C thẳng hàng
Do đó: BD cắt AC tại E
ADCB là hình vuông
=>AC=BD và AC vuông góc với BD tại trung điểm của mỗi đường
=>AC vuông góc BD tại E và E là trung điểm chung của AC và DB
E là trung điểm của AC nên AC=2AE=2(cm)
E là trung điểm của BD nên BD=2EB=2(cm)
Xét tứ giác ADCB có DB\(\perp\)AC
nên \(S_{ADCB}=\dfrac{1}{2}\cdot DB\cdot AC=\dfrac{1}{2}\cdot2\cdot2=2\left(cm^2\right)\)
b: ADCB là hình vuông
=>\(S_{ADCB}=AB^2\)
=>\(AB^2=2\)
=>\(AB=\sqrt{2}\left(cm\right)\)