K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

Phương án A sai vì khi M trùng với H thì SM = SH

Phương án B đúng vì khi M trùng với H thì SM = SH; khi M ≠ H thì SM > SH

Phương án C, D sai vì không bao giờ xảy ra trường hợp SM < SH

Đáp án B

27 tháng 4 2017

Giải bài 8 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Giả sử ta có hai đường xiên SM, SN và các hình chiếu HM, HN của chúng trên mp (α).

Vì SH ⊥ mp(α)

⇒ SH ⊥ HM và SH ⊥ HN

⇒ ΔSHN và ΔSHM vuông tại H.

Áp dụng định lí Py-ta- go vào hai tam giác vuông này ta có:

 

⇒   S M 2   =   S H 2   +   H M 2 ;     v à   S N 2   =   S H 2   +   H N 2 .     a )   S M   =   S N   ⇔   S M 2   =   S N 2   ⇔   H M 2   =   H N 2   ⇔   H M   =   H N .     b )   S M   >   S N   ⇔   S M 2   >   S N 2   ⇔   H M 2   >   H N 2   ⇔   H M   >   H N .

 

31 tháng 3 2017

Giải bài 8 trang 105 sgk Hình học 11 | Để học tốt Toán 11

a) Giả sử ta có hai đường xiên SA, SB và các hình chiếu HA, HB của chúng trên mp(α)

Giả sử HA = HB

Vì SH ⊥ mp(α) nên SH ⊥ HA và SH ⊥ SB và các tam giác SHA, SHB là các tam giác vuông. Hai tam giác vuông SHA, SHB có canh SH chung và HA = HB nên :

ΔSHA = ΔSHB SA = SB

Ngược lại nếu SA = SB thì ΔSHA = ΔSHB ⇒ HA = HB

Kết quả, ta có HA = HB SA= SB (đpcm)

b) Giả sử có hai đường xiên SA, SC và các hình chiếu HA, HC của chúng trên mp(α) với giả thiết HC > HA.

Trên đoạn HC, lấy điểm B' sao cho HA' = HA ⇒ HC > HA'. Như vậy, theo kết quả câu a) ta có SA' = SA. Ta có trong các tam giác vuông SHB', SHC thì :

SC2= SH2 + HC2

SA2 = SH2 + HA2

Vì HC > HA' nên SC2 > SA2 ⇒ SC > SA

Suy ra SC > SA

Như vậy HC > HA ⇒ SC > SA

Lí luận tương tự, ta có : SC > SA ⇒ HC > HA

Kết quả : HC > HA ⇔ SC > SA

31 tháng 3 2017

a) Gọi SN là một đường xiên khác. Xét hai tam giác vuông SHM và SHN có SH chung. Nếu SM = SN => tam giác SHM = tam giác SHN => HM = HN, ngược lại nếu HM = HN thì tam giác SHM = tam giác SHNSM => SM = SN.

b) Xét tam giác vuông SHM và SHN có SH chung. Nếu SN > SM thì \(HN^2-SN^2-SH^2\) => \(SM^2-SH^2=HM^2\) => HN > HM. Chứng minh tương tự cho chiều ngược lại.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) 

+) Giả sử SM = SM’

Xét tam giác SHM vuông tại H có

\(S{M^2} = S{H^2} + M{H^2}\) (định lí Pytago)

Xét tam giác SHM’ vuông tại H có

\(S{M'^2} = S{H^2} + M'{H^2}\) (định lí Pytago)

Mà SM = SM’ nên MH = MH’

+) Giả sử HM = HM’

Xét tam giác SHM vuông tại H có

\(S{M^2} = S{H^2} + M{H^2}\) (định lí Pytago)

Xét tam giác SHM’ vuông tại H có

\(S{M'^2} = S{H^2} + M'{H^2}\) (định lí Pytago)

Mà HM = HM’ nên SM = SM’

b) \(\begin{array}{l}MH > M'H \Leftrightarrow M{H^2} > M'{H^2}\\ \Leftrightarrow M{H^2} + S{H^2} > M'{H^2} + S{H^2} \Leftrightarrow S{M^2} > S{{M'}^2} \Leftrightarrow SM > SM'\end{array}\)

NV
21 tháng 4 2023

a.

\(\left\{{}\begin{matrix}SH\perp\left(ABCD\right)\Rightarrow SH\perp AD\\AB\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\)

Mà \(AD\in\left(SAD\right)\Rightarrow\left(SAD\right)\perp\left(SAB\right)\)

b.

M là điểm nào nhỉ?

c.

\(\left\{{}\begin{matrix}SH\perp\left(ABCD\right)\Rightarrow SH\perp CD\\HK\perp CD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SHK\right)\)

Mà \(CD=\left(SCD\right)\cap\left(ABCD\right)\)

\(\Rightarrow\widehat{SKH}\) là góc giữa (SCD) và (ABCD)

\(HK=AD=a\Rightarrow tan\widehat{SKH}=\dfrac{SH}{HK}=\dfrac{\sqrt{3}}{3}\Rightarrow\widehat{SKH}=30^0\)

d.

Từ H kẻ \(HE\perp SK\) (E thuộc SK)

\(CD\perp\left(SHK\right)\) theo cmt \(\Rightarrow CD\perp HE\)

\(\Rightarrow HE\perp\left(SCD\right)\Rightarrow HE=d\left(H;\left(SCD\right)\right)\)

Hệ thức lượng:

\(\dfrac{1}{HE^2}=\dfrac{1}{SH^2}+\dfrac{1}{HK^2}\Rightarrow HE=\dfrac{a}{2}\)

NV
21 tháng 4 2023

loading...

30 tháng 12 2017

Đáp án B

NV
2 tháng 4 2023

a.

Do tam giác SAB đều \(\Rightarrow SB=AB=a\)

Trong tam giác SBC ta có: 

\(SB^2+BC^2=2a^2=SC^2\)

\(\Rightarrow\Delta SBC\) vuông tại B (pitago đảo)

\(\Rightarrow BC\perp SB\)

Mà \(BC\perp AB\left(gt\right)\)

\(\Rightarrow BC\perp\left(SAB\right)\)

Do \(SH\in\left(SAB\right)\Rightarrow BC\perp SH\) (1)

Lại có SAB là tam giác đều, mà SH là đường trung tuyến (H là trung điểm AB)

\(\Rightarrow SH\) đồng thời là đường cao hay \(SH\perp AB\) (2)

(1);(2) \(\Rightarrow SH\perp\left(ABCD\right)\)

b.

\(SH\perp\left(ABCD\right)\Rightarrow\) HM là hình chiếu vuông góc của SM lên (ABCD)

\(\Rightarrow\widehat{SMH}\) là góc giữa SM và (ABCD) hay \(\alpha=\widehat{SMH}\)

\(SH=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)

\(HM=BC=a\) \(\Rightarrow tan\alpha=\dfrac{SH}{HM}=\dfrac{\sqrt{3}}{2}\)

c.

Do H là trung điểm AB, K là trung điểm AD \(\Rightarrow\) HK là đường trung bình tam giác ABD

\(\Rightarrow HK||BD\)

Mà \(BD\perp AC\) (hai đường chéo hình vuông)

\(\Rightarrow HK\perp AC\) (3)

Lại có \(SH\perp\left(ABCD\right)\Rightarrow SH\perp AC\) (4)

(3);(4) \(\Rightarrow AC\perp\left(SHK\right)\Rightarrow AC\perp SK\)

NV
2 tháng 4 2023

loading...

NV
4 tháng 10 2019

a/ Do H là trung điểm BC \(\Rightarrow BH=\frac{a\sqrt{3}}{2}\)

\(SH\perp AC\Rightarrow SH\perp\left(ABC\right)\Rightarrow\widehat{SBH}\) là góc giữa SB và (ABC)

\(tan\widehat{SBH}=\frac{SH}{BH}=\frac{\sqrt{3}}{3}\Rightarrow\widehat{SBH}=30^0\)

b/ Qua M kẻ đường thẳng song song AC cắt BH tại N

\(\Rightarrow MN\) là đường trung bình tam giác BCH \(\Rightarrow\left\{{}\begin{matrix}MN=\frac{1}{2}CH=\frac{1}{4}AC=\frac{a}{4}\\HN=\frac{1}{2}BH=\frac{a\sqrt{3}}{4}\end{matrix}\right.\)

\(\Rightarrow SN=\sqrt{SH^2+HN^2}=\frac{a\sqrt{7}}{4}\)

\(\left\{{}\begin{matrix}MN\perp BH\\MN\perp SH\end{matrix}\right.\) \(\Rightarrow MN\perp\left(SBH\right)\)

\(\Rightarrow\widehat{MSN}\) là góc giữa SM và (SBH)

\(tan\widehat{MSN}=\frac{MN}{SN}=\frac{\sqrt{7}}{7}\)

3 tháng 8 2018

Chọn A

10 tháng 1 2018

Chọn B

Phương pháp

Cách giải

6 tháng 8 2018