Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tần số dao động riêng: \(f=\frac{1}{2\pi\sqrt{LC}}\Rightarrow\frac{1}{f^2}=k.C\)(Vì chỉ thay đổi C nên ta biểu diễn f theo C, k là một hệ số nào đó)
Suy ra:
\(\frac{1}{f_1^2}=k.C_1\)
\(\frac{1}{f_2^2}=k.C_2\)
Ta cần tìm:
\(\frac{1}{f^2}=k\left(C_1+C_2\right)\Rightarrow\frac{1}{f^2}=kC_1+kC_2\)
\(\Rightarrow\frac{1}{f^2}=\frac{1}{f_1^2}+\frac{1}{f_2^2}\)
Thay số ta đc f = 35Hz
Xem t = 0 là lúc cả hai mạch bắt đầu dao động
Phương trình hiệu điện thế trên 2 tụ C1 và C2 lần lượt có dạng
\(\begin{cases}u_1=12cos\left(\omega t\right)\left(V\right)\\u_2=6cos\left(\omega t\right)\left(V\right)\end{cases}\)
Độ chênh lệch Hiệu điện thế: \(\Delta u=u_1-u_2=6cos\left(\omega t\right)\left(V\right)\)
\(u_1-u_2=6cos\left(\omega t\right)=\pm3\Rightarrow cos\left(\omega t\right)=\pm0,5\Rightarrow cos\left(\frac{2\pi}{T}t\right)=\pm0,5\)
\(\Rightarrow\Delta t_{min}=\frac{T}{6}=\frac{10^{-6}}{3}s\)
Cường độ dòng điện tức thời qua tụ: \(i=\frac{\Delta q}{\Delta t}=C\frac{\Delta u}{\Delta t}\)
Do 2 tụ mắc song song nên điện áp tức thời 2 đầu mỗi tụ như nhau. Do vậy \(\frac{i_1}{i_2}=\frac{C_1}{C_2}=\frac{1}{2}\Rightarrow i_2=2i_1=2.0,04=0,08A\).
Cường độ dòng điện qua cuộn cảm là: i=i1+i2=0,04+0,08=0,12A
Do năng lượng của tụ: \(W_đ=\frac{1}{2}C.u^2\), nên năng lượng điện tỉ lệ với điện dung C.
Do đó, năng lượng của tụ C1 là: 13,5.10-6 / 2 = 6,75.10-6 (J)
Năng lượng điện của mạch: W = 13,5.10−6+6,75.10-6 =20,25.10-6
Năng lượng điện từ của mạch: \(W=W_đ+W_t=W_{tmax}\Rightarrow 20,25.10^{-6}+\frac{1}{2}.5.10^{-3}.(0,12)^2=\frac{1}{2}.5.10^{-3}.I_0^2\)
=>\(I_0=0,15A\)
Đáp án D
Sử sụng hệ thức: += 1
Thay số và giải hệ phương trình trìm I0 và q0
Tần số góc: ω = = 50 (rad/s)
\(\leftrightarrow\frac{u^2_R}{\left(\frac{8}{5}\right)^2}+\frac{u^2_L}{\left(\frac{5}{2}\right)^2}=1\)
Điều kiện :
\(\begin{cases}u_R\le\frac{8}{5}\left(V\right)\\u_L\le\frac{5}{2}\left(V\right)\end{cases}\)
\(\Rightarrow U_{\text{oR}}=\frac{8}{5}\left(V\right);U_{0L}=\frac{5}{2}\left(V\right)\)
\(\Rightarrow\frac{R}{\omega L}=\frac{8}{5}.\frac{2}{5}=\frac{16}{25}\leftrightarrow L=\frac{25R}{16L}=\frac{1}{2\pi}\left(H\right)\)
Đáp án C
Hướng dẫn:
\(U_{AB}=U_C=2\) (1)
\(U_{BC}^2=U_r^2+U_L^2=3\) (2)
\(U_{AC}^2=U_r^2+(U_L-U_C)^2=1\) (3)
Giải hệ 3 pt trên sẽ tìm đc \(U_r\) và \(U_L\)
Chia cho \(I\) sẽ tìm được \(r\) và \(Z_L\)
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>