K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Phân tích thành nhân tử:a. \(x^4+x\left(2016x+1\right)-2016\left(x-1\right)\)b. \(\left(x^2\left(y+1\right)+4\right)^2-\left(4x^2+y+1\right)^2\)c. \(x^4+4\)d. \(x^4+x^2+2x+6\)Câu 2:a. Cho \(x=a+\frac{1}{a};y=b+\frac{1}{b};z=ab+\frac{1}{ab}\left(a,b\ne0\right)\)Tính giá trị của \(M=x^2+y^2+z^2-xyz\)b.Cho hai số a,b thoả a-b=ab=1. Tính giá trị của \(N=a^6+2a^4b^2+a^2b^4+9b^2+1989\)c.1.1. Cho đa thức \(P\left(x\right)=x^2-\left(m^2-2\right)x+m-35\)Xác định m...
Đọc tiếp

Câu 1: Phân tích thành nhân tử:

a. \(x^4+x\left(2016x+1\right)-2016\left(x-1\right)\)

b. \(\left(x^2\left(y+1\right)+4\right)^2-\left(4x^2+y+1\right)^2\)

c. \(x^4+4\)

d. \(x^4+x^2+2x+6\)

Câu 2:

a. Cho \(x=a+\frac{1}{a};y=b+\frac{1}{b};z=ab+\frac{1}{ab}\left(a,b\ne0\right)\)Tính giá trị của \(M=x^2+y^2+z^2-xyz\)
b.Cho hai số a,b thoả a-b=ab=1. Tính giá trị của \(N=a^6+2a^4b^2+a^2b^4+9b^2+1989\)

c.

1.1. Cho đa thức \(P\left(x\right)=x^2-\left(m^2-2\right)x+m-35\)Xác định m để đa thức P(x) không có nghiệm bằng 5.

1.2. Cho đa thức \(Q\left(x\right)=ax^2+bx+c\)Viết a khác 0 và Q(x)>0 với mọi x thuộc R. Chừng minh: \(\frac{9a-5b+3c}{4a-2n+c}>2\)

Câu 3:

a. Tìm x,y là số tự nhiên, biết \(5^x=2^y+124\)

b.

1.1) Nếu a+b+c là số chẵn thì chứng minh: \(m=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là số chẵn

1.2) Nếu a+b+c chia hết cho 6 thì chứng minh: \(n=\left(a+b\right)\left(b+c\right)\left(c+a\right)-2abc\)chia hết cho 6

 

0
18 tháng 8 2018

a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )

        \(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

         \(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

           \(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

            \(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)

b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x

                                         <=> 1-2x thuộc Ư(2) = {1;2;-1;-2}

Nếu 1-2x = 1 thì 2x = 0 => x= 0

Nếu 1-2x = 2 thì 2x = -1 => x = -1/2

Nếu 1-2x = -1 thì 2x = 2 => x =1

Nếu 1-2x = -2 thì 2x = 3 => x = 3/2

Vậy ....

19 tháng 2 2019

a) \(A=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right):\frac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)(ĐKXĐ: \(\hept{\begin{cases}x\ne\pm2\\x\ne3\end{cases}}\))\(=\left[\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{4-x^2}\right]:\frac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\)\(=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}.\frac{2-x}{x-3}=\frac{4x}{x-3}\)

b) l\(x-5\)l\(=2\Leftrightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\left(n\right)\\x=3\left(l\right)\end{cases}\Rightarrow A=\frac{4.7}{7-3}=\frac{28}{4}=7}\)
c)
* Để A có giá trị là một số nguyên thì \(A=\frac{4x}{x-3}=\frac{4x-12+12}{x-3}=4+\frac{12}{x-3}\)là một số nguyên hay \(\frac{12}{x-3}\)là một số nguyên \(\Rightarrow x-3\inƯ\left(12\right)\Rightarrow S=\left(-9;-3;-1;0;1;4;5;6;7;9;15\right)\)(1)
* Để \(A=4+\frac{12}{x-3}< 4\Leftrightarrow\frac{12}{x-3}< 0\) thì \(x-3< 0\Leftrightarrow x< 3\)(2)
(1)(2) \(\Rightarrow S=\left(-9;-3;-1;0;1\right)\)

17 tháng 8 2018

\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)

\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)

\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x

17 tháng 8 2018

3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2

Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)

Tương tự ta có b^2-a^2=n

Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn

Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1

Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)

Từ (1) và (2)=> n chia hết cho 40

                 

AH
Akai Haruma
Giáo viên
13 tháng 7

Lời giải:

$M=\frac{-ab(a-b)}{(a-b)(b-c)(c-a)}+\frac{-bc(b-c)}{(a-b)(b-c)(c-a)}+\frac{-ca(c-a)}{(a-b)(b-c)(c-a)}$

$=\frac{-[ab(a-b)+bc(b-c)+ca(c-a)]}{(a-b)(b-c)(c-a)}$

$=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1$