Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên mỗi hàng, mỗi cột phải có hai số -1, hai số 1.
Ta sẽ xếp theo hàng.
Ta có các khả năng của các hàng như sau:
(1) 1, 1, -1, -1
(2) 1, -1, -1, 1
(3) -1, -1, 1, 1
(4) -1, 1, -1, 1
(5) 1, -1, 1, -1
(6) -1, 1, 1, -1
Giả sử hàng 1 ta điền bộ (1). Ta có các trường hợp sau:
TH1: Hàng 2 điền bộ (1), khi đó hàng 3, hàng 4 ta phải điền bộ (3).
TH2: Hàng 2 điền bộ để tổng 2 số trong của các cột bằng 0, khi đó ta điền bộ (3). Hàng 3 và hàng 4 khi đó cũng phải điền sao cho tổng các cột trong hai hàng bằng 0. Có 6 cách điền như vậy.
TH3: Hàng 2 điền sao cho có 2 cột trong 4 cột có tổng bằng 0. Có 4 cách. Khi đó điền hàng 3 có 2 cách, điền hàng 4 có 1 cách. Tổng số cách là: 1.4.2.1=8 (cách).
Vậy có tổng số cách là: 6.(1 + 6 + 8) = 90 (cách).
Chọn đáp án D
Một điểm bất kì trên đường thẳng d1 với hai điểm phân biệt trên d2 hoặc cứ một điểm bất kì trên đường thẳng d2 với hai điểm phân biệt trên d1 tạo thành một tam giác.
Vậy tổng sổ tam giác thỏa mãn đề bài là
Thực hiện xóa 2 số bất kì trên bảng rồi ghi lại 1 số tự nhiên bằng tổng 2 số vừa xóa. Tưởng tưởng mỗi lần xóa 2 số thì chúng ta sẽ thêm 2 số ban đầu vì thế các chữ số xuất hiện trên bảng không thay đổi chỉ thay đổi là giữa các số có thêm dấu cộng. Như vậy cứ làm đến bước cuối cùng thì số xuất hiện trên bảng sẽ là: 1 + 2 + 3 + 4 +...+ 2020 = ( 1 + 2020) 2020 : 2 = 2041210
Đáp án C.
Mặt cầu S : x - 1 2 + y - 1 2 + z + 2 2 = 4 có tâm và bán kính R = 2
Xét ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau, cắt mặt cầu (S) theo ba giao tuyến là các đường tròn (C1), (C2), (C3 ) lần lượt là
Gọi r1, r2, r3 lần lượt là bán kính của các đường tròn giao tuyến của mặt cầu (S) với ba mặt phẳng (P1), (P2), (P3 )
Vì (P1), (P2) đi qua tâm I(1;1;-2) nên
nên
Tổng diện tích của ba hình tròn (P1), (P2), (P3 ) là
có
Gắn vào hệ trục Oxyz có
CÓ : S(0,0,0) A(0,0,a) , B(0,a,0), C(a,0,0)
e nhớ ko lầm là a đã học tới bài này âu mà sao bik làm hay z???
Chọn A
Ta có d1 song song d2, phương trình mặt phẳng chứa hai đường thẳng d1, d2 là
Mà cùng phương với véc-tơ chỉ phương của hai đường thẳng d1, d2 nên không tồn tại đường thẳng nào đồng thời cắt cả bốn đường thẳng trên.