K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

A C B H M D E F I J

a) Xét tứ giác AHBD có MB = MA; MD = MH nên nó là hình bình hành (dhnb). 

Lại có \(\widehat{BHA}=90^o\) nên AHBD là hình chữ nhật (dhnb).

b) Do AHBD là hình chữ nhật nên AD song song và bằng HB.

Lại có HB = HE nên AD song song và bằng HE.

Xét tứ giác ADHE có AD song song và bằng HE nên nó là hình bình hành (dhnb)

c) Lấy J là trung điểm AF.

Do AB và EF cùng vuông góc với AC nên BAFE là hình thang vuông.

Lại có H, J là trung điểm các cạnh bên nên HJ là đường trung bình của hình thang.

Vậy nên HJ // AB // EF hay \(HJ\perp AF\)  

Xét tam giác AHF có HJ là trung tuyến đồng thời đường cao nên nó là tam giác cân.

Vậy thì HA = HF.

d) Xét tam giác vuông EFC có FI là trung tuyến ứng với cạnh huyền nên FI = IC hay \(\widehat{IFC}=\widehat{ICF}\)

Lại có \(\widehat{ICF}=\widehat{BAH}\) (Cùng phụ với góc HAC)

Nên \(\widehat{IFC}=\widehat{BAH}\)

Ta cũng có \(\widehat{HFE}=\widehat{JHF}\)  (Hai góc so le trong)

\(\widehat{JHF}=\widehat{JHA}\) (HJ là phân giác)

\(\widehat{JHA}=\widehat{BAH}\)  (Hai góc so le trong)

nên \(\widehat{HFE}=\widehat{BAH}\)

Vậy thì \(\widehat{IFC}=\widehat{HFE}\)

Từ đó ta có : \(\widehat{IFC}+\widehat{EFI}=\widehat{HFE}+\widehat{EFI}\Rightarrow\widehat{HFI}=\widehat{EFC}=90^o\)

Hay \(HF\perp FI\)

12 tháng 12 2023

loading...  loading...  loading...  loading...  

12 tháng 12 2023

loading...  a) Tứ giác ABDC có:

M là trung điểm của BC (gt)

M là trung điểm của AD (gt)

⇒ ABDC là hình bình hành

Mà ∠BAC = 90⁰ (∆ABC vuông tại A)

⇒ ABDC là hình chữ nhật

b) Do ABDC là hình chữ nhật (cmt)

⇒ CD = AB (1)

Do B là trung điểm của AE (gt)

⇒ BE = AB = AE : 2 (2)

Từ (1) và (2) ⇒ CD = BE

Do ABDC là hình chữ nhật (cmt)

⇒ CD // AB

⇒ CD // BE

Tứ giác BEDC có:

CD // BE (cmt)

CD = BE (cmt)

⇒ BEDC là hình bình hành

c) Do ABDC là hình chữ nhật (cmt)

⇒ AC // BD

Do đó AC, BD, EK đồng quy là vô lý

Em xem lại đề nhé!

 

a: Xét tứ giác AHCE có

I là trung điểm chung của AC và HE

góc AHC=90 độ

=>AHCE là hình chữ nhật

b: Xét ΔAHC có

HI,AM là trung tuyến

HI cắt AM tại G

=>G là trọng tâm

=>HG=2/3HI=2/3*1/2*HE=1/3HE

Xét ΔCAE có

AN,EI là trung tuyến

AN cắt EI tại K

=>K là trọng tâm

=>EK=2/3EI=1/3EH

HG+GK+KE=HE

=>GK=HE-1/3HE-1/3HE=1/3HE

=>HG=GK=KE

28 tháng 1 2020

1)Vì \(\Delta ABC\)vuông tại A (gt) => \(\widehat{BAC=90^0}hay\widehat{HÂ}K=90^0\)

Vì MH vông góc với AB tại H ( gt)

=>\(\widehat{MHA=90^0}\)

Vi MK vuông góc với AC tại K ( gt)

=> \(\widehat{MKA=90^0}\)

Xét tứ giác AMHK có : 

\(\widehat{MKA=90^0\left(cmt\right)}\)

\(\widehat{MHA=}90^0\left(cmt\right)\)

\(\widehat{HAK=90^0\left(cmt\right)}\)

=> AMHK là hình chữ nhật ( dấu hiệu nhận biết)(đpcm)

2)a. Có : MH vuông góc với AB ( gt )

              AC vuông góc với AB ( \(\Delta\)ABC vuông tại A)

=> MH//AC 

Xét tam giác ABc có

MH//AC( cmt)

M là trung điểm BC (gt)

=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)

b. Có: MK vuông góc AC ( gt)

AB vuông góc AC( tam giác ABC vuông tại A )

=> MK//AB

Có:MK//AB(cmt)

M là trung điểm BC ( gt)

=> K là trung điểm AC ( định lý đường trung bình của tam giác )

Có : H là trung điểm AB ( cmt)

=. BH=\(\frac{1}{2}AB\)

Xét tam giác ABC có

M là trung điểm BC(cmt)

K là trung điểm AC ( cmt)

=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)

=> MK=\(\frac{1}{2}AB\)( tính chất đường trung bình của tam giác)

=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH

Có MK=\(\frac{1}{2}AB\)

BH= \(\frac{1}{2}AB\)

=> MK=BH

Mà MK//BH(cmt)

=> BMKH là hình bình hành

VÌ BMKH là hình bình hành (cmt)

=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường 

Mà E là trung điểm HM ( gt)

=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)

3)a.Có MK//AB(cmt)

D thuộc MK

=> MD//AB

Có : BC//Ax( gt)

M thuộc BC; D thuộc Ax

=> BM//AD

Xét tứ giác ABMD có : 

AB//MD(cmt)

BM//AD(cmt)

=> ABMD là hình bình hành (dấu hiệu nhận biết)

Xét tam giác ABC vuộng tại A có

M là trung điểm BC( gt)

=> AM là đường trung tuyến ứng với cạnh huyền BC

=> AM=\(\frac{1}{2}BC\)(tính chất )

Có M là trung điểm BC

=> BM=\(\frac{1}{2}BC\)

Mà  AM=\(\frac{1}{2}BC\)

=> BM= AM

Vì ABMD là hình bình hành (cmt)

=> BM= AD(tính chất hình bình hành)

MÀ BM=AM

=> AD=AM(đpcm)

b.Xét tam giác AMD có 

AM=AD(cmt)

=> Tam giác AMD cân tại A 

Có AC vuông góc MK => AK vuông góc MD và AC vuông góc MD

Xét tam giác AMD cân tại A có :

AK vuông góc MD

=> AK là đường cao đồng thời là đường trung tuyến của tam giác AMD
Có AK là đường trung tuyến của tam giác AMD 

=> K là trung điểm MD

Xét tứ giác AMCD có

K là trung điểm AC ( cmt0

K là trung điểm MD(cmt)

=> AMCD là hình bình hành (dấu hiệu nhận biết)

Mà đường chéo AC vuông góc với đương chéo MD

=> AMCD là hình thoi ( dấu hiệu nhận biết)

tưởng gì 

a, xét tứ giác AHMK có

góc MHA=90 độ( MH ⊥ Ab-gt)

góc MKA=90 độ( MK⊥ AC-gt)

góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)

-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn) b)Có : MH vuông góc với AB ( gt )

              AC vuông góc với AB ( 
Δ
ABC vuông tại A)

=> MH//AC 

Xét tam giác ABc có

MH//AC( cmt)

M là trung điểm BC (gt)

=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)
. Có: MK vuông góc AC ( gt)

AB vuông góc AC( tam giác ABC vuông tại A )

=> MK//AB

Có:MK//AB(cmt)

M là trung điểm BC ( gt)

=> K là trung điểm AC ( định lý đường trung bình của tam giác )

Có : H là trung điểm AB ( cmt)

=. BH=1/2AB

Xét tam giác ABC có

M là trung điểm BC(cmt)

K là trung điểm AC ( cmt)

=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)

=> MK=1/2AB

( tính chất đường trung bình của tam giác)

=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH

Có MK=1/2AB

BH= 1/2AB

=> MK=BH

Mà MK//BH(cmt)

=> BMKH là hình bình hành

c)VÌ BMKH là hình bình hành (cmt)

=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường 

Mà E là trung điểm HM ( gt)

=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)