Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm
a/ \(m^3-m=m\left(m^2-1\right)=m\left(m-1\right)\left(m+1\right)\)
Đây là 3 số nguyên liên tiếp nên chia hết cho 6
a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)
b: \(=43^{2018}\left(43+1\right)=43^{2018}\cdot44⋮11\)
d: \(=6mn-4m-9n+6-6mn+9m+4n-6\)
=5m-5n=5(m-n) chia hết cho 5
a)
x^4-x^3+6x^2-x +a x^2-x+5 x^2+1 x^2 -x +a a-5
Để \(x^4-x^3+6x^2-x+a⋮x^2-x+5\) thì \(a-5=0\Rightarrow a=5\)
b)
3n^3+10n^2 -5 3n+1 n^2+3n-1 9n^2 -5 -3n-5 -4
Để \(3n^3+10n^2-5⋮3n+1\) thì \(3n+1⋮-4\)
\(\Rightarrow3n+1\inƯ\left(-4\right)\)
\(\Rightarrow3n+1\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow3n\in\left\{-5;-3;-2;0;1;3\right\}\)
\(\Rightarrow n\in\left\{-\dfrac{5}{3};-1;-\dfrac{2}{3};0;\dfrac{1}{3};1\right\}\)
a: \(\Rightarrow x^3-2x^2+3x^2-6x-5x+10+n-10⋮x-2\)
=>n-10=0
=>n=10
b: \(A=5n\left(n^2+3n+2\right)=5n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là 3 số liên tiếp
nên n(n+1)(n+2) chia hết cho 3!=6
=>A chia hết cho 30
1: chứng minh \(n^3-n⋮6\)
Ta có: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Ta có: \(n\cdot\left(n-1\right)⋮2\forall n\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮3\forall n\)
mà 2 và 3 là hai số nguyên tố cùng nhau
nên \(\left(n-1\right)n\left(n+1\right)⋮2\cdot3\)
hay \(\left(n-1\right)n\left(n+1\right)⋮6\forall n\)
⇒\(n^3-n⋮6\forall n\in Z\)
2: Chứng minh \(n^5-n\) chia hết cho 30 với mọi n∈Z
Ta có: \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\cdot\left(n+1\right)\left(n-1\right)\cdot\left(n^2+1\right)\)
Ta có: \(n\cdot\left(n-1\right)⋮2\forall n\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮3\forall n\)
mà 2 và 3 là hai số nguyên tố cùng nhau
nên \(\left(n-1\right)n\left(n+1\right)⋮2\cdot3\)
hay \(\left(n-1\right)n\left(n+1\right)⋮6\forall n\)
⇒\(n\cdot\left(n+1\right)\left(n-1\right)\cdot\left(n^2+1\right)⋮6\forall n\in Z\)
⇒\(n^5-n⋮6\forall n\in Z\)(1)
Ta có: 5 là số nguyên tố(vì 5 là một số tự nhiên>1 và chỉ có 2 ước là 1 và chính nó)
nên Áp dụng định lí nhỏ fermat vào đa thức \(n^5-n\), ta được
\(n^5-n⋮5\forall n\in Z\)(2)
Ta lại có: 5 và 6 là hai số nguyên tố cùng nhau(3)
Từ (1),(2) và (3) suy ra \(n^5-n⋮30\forall n\in Z\)(đpcm)
ta có 3n^3+13n^2-7n+5 = 3n^3-2n^2+15n^2-10n+3n-2+7 = n^2(3n-2)+5n(3n-2)+3n-2+7 = (n^2+5n+1)(3n-2)+7 => (3n^3+13n^2-7n+5) : (3n-2) có dư =7 để 3n^3+13n^2-7n+5 chia hết thì 7\(⋮\)3n-2 => 3n-2ϵƯ(7) =\(\left\{-1,1,-7,7\right\}\)
=> n\(\in\)\(\left\{1;\dfrac{1}{3},-\dfrac{5}{3},2\right\}\) vậy .....