Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=mn\left(m^2-n^2\right)\) (1)
\(A=mn\left(n-m\right)\left(n+m\right)\)(1)
1.- với A dạng (1) ta có (m^2 -n^2) luôn chia hết cho 3 { số chính phương luôn có dạng 3k hoặc 3k+1}
2.-Với A dạng (2)
2.1- nếu n hoặc m chẵn hiển nhiên A chia hết cho 2
2.1- nếu n và m lẻ thì (n+m) chia hết cho 2
Vậy: A chia hết cho 2&3 {2&3 ntố cùng nhau) => A chia hết cho 6 => dpcm
1, n có dạng 2k+1(n\(\in N\)) Ta có:
\(n^2+4n+3=\left(2k+1\right)^2+4\left(2k+1\right)+3\)
\(=4k^2+4k+1+8k+4+3\)
\(=4k^2+12k+8\)
\(=4\left(k^2+3k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
vì (k+1)(k+2) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\left(k+1\right)\left(k+2\right)\) chia hết cho 2
mà 4(k+1)(k+2)chia hết cho 4
\(\Rightarrow n^2+4n+3\) chia hết cho 8 với mọi n là số lẻ.
2, ta có:
\(a^3+b^3+c^3=\left(a+b+c\right)\left(ab-bc-ac\right)+3abc\)
\(\Rightarrow a^3+b^3+c^3=3abc\) (vì a+b+c=0)
a+b+c=0
=>(a+b+c)3=0
=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Do a+b+c=0
=>a3+b3+c3=3abc(ĐPCM)
Lời giải:
Ở đây ta sẽ xét bài toán trong TH $m,n$ là số tự nhiên .
Cho \(n=4k+2(k\in\mathbb{N})\)
\(\Rightarrow 3^n+1=3^{4k+2}+1=9^{2k+1}+1\vdots 9+1\vdots 5\) (theo hằng đẳng thức đáng nhớ)
Mà \(2^m\) không có ước là $5$
Do đó \(2^m\not\vdots 3^n+1\) với mọi số tự nhiên $m,n>1$