Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=(m-n)(m-p)(m-q)(n-p)(n-q)(p-q)
Ta có: m,n,p,q là các số nguyên
=> theo nguyên lí Derichlet thì có ít nhất 2 số cùng số dư khi chia cho 3
=>hiệu của chúng chia hết cho 3
=>A chia hết cho 3 (1)
Giả sử trong 4 số trên đều không chia hết cho 2
=>hiệu 2 số bất kì đều chia hết cho 2
=>tích của chúng ít nhất chia hết cho 2.2=4
=>A chia hết cho 4
Giả sử trong 4 số đó có 3 số không chia hết cho 2
=>hiệu 2 số bất kì trong 3 số đó chia hết cho 2
=>tích của chúng chia hết cho 2.2=4
=>A chia hết cho 4
Giả sử trong 4 số đó có 2 số không chia hết cho 2
=>hiệu của chúng chia hết cho 2
Và còn lại 2 số chia hết cho 2
=>hiệu của chúng cũng chia hết cho 2
=>A chia hết cho 4
Giả sử trong 4 số có 3 số chia hết cho 2
=>hiệu 2 số bất kì trong 3 số đó chia hết cho 2
=> tích của chúng chia hết cho 2.2=4
=>A chia hết cho 4
Giả sử cả 4 số đều chia hết cho 2
=>có ít nhất 2 hiệu chia hết cho 2
=>tích của chúng chia hết cho 2
=>A chia hết cho 4
Vậy A luôn chia hết cho 4 (2)
Từ (1) và (2) và (3;4)=1
=>A chia hết cho 3.4=12
Vậy A chia hết cho 12(đpcm)
bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm
b1
Các số tự nhiên chia hết cho 3 có số dư là n;n+1;n+2
Nếu \(n⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)⋮3\)
Nếu \(n+1⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)⋮3\)
Nếu \(n+2⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)=n\left(n+1\right)\left(n+2+3\right)\)
Mà \(3⋮3\)\(\Rightarrow n+2+3⋮3\) \(\Rightarrow n\left(n+1\right)\left(n+2+3\right)⋮3\)
Hay \(n\left(n+1\right)\left(n+5\right)⋮3\)
Vậy \(n\left(n+1\right)\left(n+5\right)⋮3\forall n\in N\)
a) tổng S bằng
(2014+4).671:2=677 039
b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n
→2n.(n+2013)\(⋮̸\)2
C)M=2+22+23+...+220
=(2+22+23+24)+...+(217+218+219+220)
=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)
=30.1+...+216.(2+22+23+24)
=30.1+...+216.30
=30(1+25+29+213+216)\(⋮\)5
c, M= 2 + 22 + 23 +........220
Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5
Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)
= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )
= 30+24 .30 + 28. 30 +.........+ 216.30
= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5
Vậy M chia hết cho 5
a) Lấy 2m+1-2(m-1)\(⋮\)2m+1.
Tìm các giá trị của 2m+1 rồi tìm m
b) Theo đề bài => /m/<2 để /3m-1/<3
a)m-1 chia hết 2m+1
suy ra 2(m-1) chia hết cho 2m+1
\(\Rightarrow\)2m-2\(⋮\)2m+1
\(\Rightarrow\)2(m-1+1)-2\(⋮\)2m+1
1.Giải pt:
(2x+4)*căn(x+8)=3x^2+7x+8
2.Cho đường tròn (O,R), đường kính AB cố định.Lấy P là 1 điểm nằm giữa B và O.Vẽ góc vuông MPN(M,N thuộc đường tròn ;M,N khác A và B). I là trung điểm của MN
a) C/M: R^2=IO^2+IP^2
b) Gọi K là trung điểm của PO.Giả sử R=10cm,PO=8cm.Tính độ dài IK