K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)

\(6\sqrt{55}\)  là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa  \(\sqrt{55}\)

Đặt  \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\)  với  \(a,b\in N\)

\(\Rightarrow a+b=6\)

Xét các TH:

a = 0 => b = 6

a = 1 => b = 5

a = 2 => b = 4

a = 3 => b = 3

a = 4 => b = 2

a = 5 => b = 1

a = 6 => b = 0

Từ đó dễ dàng tìm đc x, y

3 tháng 8 2017

Biên cưng. Minh Quân đây. 

4 tháng 7 2018

        \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)

\(\Leftrightarrow\sqrt[3]{m^2}=-\frac{b\sqrt[3]{m}+c}{a}\)

        \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)

\(\Leftrightarrow a.m+b\sqrt[3]{m^2}+c\sqrt[3]{m}=0\)

\(\Leftrightarrow a.m+b.\left(-\frac{b\sqrt[3]{m}+c}{a}\right)+c\sqrt[3]{m}=0\)

 \(\Leftrightarrow a^2m+b.\left(-b\sqrt[3]{m}-c\right)+ac\sqrt[3]{m}=0\)

\(\Leftrightarrow a^2m-b^2.\sqrt[3]{m}-bc+ac\sqrt[3]{m}=0\)

\(\Leftrightarrow a^2m-bc=\sqrt[3]{m}\left(b^2-ac\right)\)

\(\Leftrightarrow\frac{a^2m-bc}{\sqrt[3]{m}}=b^2-ac\)

Do \(\frac{a^2m-bc}{\sqrt[3]{m}}\in I\)và \(b^2-ac\in Q\)nên

\(\Rightarrow\hept{\begin{cases}\frac{a^2m-bc}{\sqrt[3]{m}}=0\\b^2-ac=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2m-bc=0\\b^2-ac=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2m=bc\\b^2=ac\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}a^3m=abc\\b^3=abc\end{cases}\Rightarrow a^3m=b^3}\)

Với \(a,b\ne0\) \(\Rightarrow m=1\Rightarrow\sqrt[3]{m}=1\)là số hữu tỉ ( LOẠI )

Với \(a=b=0\Rightarrow c=0\left(TM\right)\)

Vậy a=b=c=0 thỏa mãn đề bài

3 tháng 7 2018

mình mới học lớp 7 thôi

19 tháng 4 2020

giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )

\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )

vậy ...

b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )

vậy ....

2 tháng 9 2017

Sửa đề : CMR:\(\sqrt[2014]{a}+\sqrt[2014]{b}-\sqrt[2014]{c}=\sqrt[2014]{a+b-c}\)

GT\(\Leftrightarrow\sqrt{a}+\sqrt{b}=\sqrt{a+b-c}+\sqrt{c}\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2=\left(\sqrt{a+b-c}+\sqrt{a}\right)^2\)

\(\Leftrightarrow a+b+2\sqrt{ab}=a+b-c+c+2\sqrt{\left(a+b-c\right)c}\)

\(\Leftrightarrow\sqrt{ab}=\sqrt{\left(a+b-c\right)c}\)

\(\Leftrightarrow ab=ac+bc-c^2\)

\(\Leftrightarrow\left(a-c\right)\left(b-c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=c\\b=c\end{matrix}\right.\)

Vì a,b vai trò như nhau nên không mất tính tổng quát giả sử :\(a=c\)

Khi đó :\(\sqrt[2014]{a}+\sqrt[2014]{b}-\sqrt[2014]{c}=\sqrt[2014]{a}+\sqrt[2014]{b}-\sqrt[2014]{a}=\sqrt[2014]{b}\) (1)

\(\sqrt[2014]{a+b-c}=\sqrt[2014]{a+b-a}=\sqrt[2014]{b}\) (2)

Từ (1) và (2) , ta suy ra :\(\sqrt[2014]{a}+\sqrt[2014]{b}-\sqrt[2014]{c}=\sqrt[2014]{a+b-c}\)

Vậy với a,b,c là các số thực dương thoả mãn :\(\sqrt{a}+\sqrt{b}-\sqrt{c}=\sqrt{a+b-c}\)

thì \(\sqrt[2014]{a}+\sqrt[2014]{b}-\sqrt[2014]{c}=\sqrt[2014]{a+b-c}\)