\(\frac{1}{2m}+\frac{1}{n}=\frac{1}{3}\)

Tìm GTNN của B = mn ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

Do m, n cùng dấu, m, n khác 0 nên m, n cùng âm hoặc cùng dương, mà nếu m, n cùng âm thì \(\frac{1}{2m}+\frac{1}{n}< 0< \frac{1}{3}\)

trái với gt \(\Rightarrow\) m, n cùng dương 

\(\frac{1}{3}=\frac{1}{2m}+\frac{1}{n}\ge2\sqrt{\frac{1}{2mn}}\)\(\Leftrightarrow\)\(\frac{1}{2mn}\le\frac{1}{36}\)\(\Leftrightarrow\)\(mn\ge18\)\(\Rightarrow\)\(B\ge18\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{2m}=\frac{1}{n}\\\frac{1}{2m}+\frac{1}{n}=\frac{1}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}m=3\\n=6\end{cases}}}\)

2 tháng 8 2017

c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)

Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)

\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)

Đế C' nguyên thì a + 1 là ước của 1

\(\Rightarrow a=0\)

\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)

\(\Rightarrow x=\frac{9}{4}\left(l\right)\)

Vậy không có x.

Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks

2 tháng 8 2017

a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)

\(=\frac{1}{3-2\sqrt{x}}\)

Câu b, c tự làm nhé

20 tháng 6 2019

Em thử ạ. Bài dài quá em chẳng biết có tính sai chỗ nào hay không nữa ;(

Từ giả thiết ta có: 

\(\hept{\begin{cases}x+y=-\frac{2}{3}\left(z+1\right)\\xy=-\frac{1}{3}\end{cases}}\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy=\frac{4}{9}\left(z+1\right)^2+\frac{2}{3}\)

Và \(\left(x-y\right)^2=\left(x+y\right)^2-4xy=\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}\)

Ta có: \(A=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)+\left(z+1\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)}{\left(x-y\right)^3}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-\frac{1}{3}\right)+\left(z+1\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)}{\left(x-y\right)^3}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\left(x-y\right)^3}\)

\(=\frac{\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\left(x-y\right)^2}\)

\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-\frac{2}{9}\left(z+1\right)^2+\frac{1}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)

\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-\frac{2}{9}\left(z+1\right)^2+\frac{1}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)

Ơ....hình như em tính sai chỗ nào rồi:(

20 tháng 6 2019

Nguyễn Khang 

\(A=\frac{\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)

\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2-1\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\) ( như này mới đúng, e thiếu -1 ở tử ) 

\(=\frac{\frac{-2}{9}\left(z+1\right)^2-\frac{2}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=-\frac{1}{2}.\frac{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-1}{2}\)

4 tháng 7 2016

À mình viết lộn đề câu 1, co mình sửa lại nhá!

 1) Tìm số nguyên n thỏa:

   \(\sqrt[3]{n+\sqrt{n^2+27}}+\sqrt[3]{n-\sqrt{n^2+27}}=4\)

4 tháng 7 2016

Khi đó nếu bỏ chữ số tận cùng thì số mới là abc

Ta có:

abc3 - abc = (1000a + 100b + 10c + 3) - (100a + 10b + c)

                 => 900a + 90b + 9c + 3=1992

                 => 900a + 90b + 9c=1989

                 => 9(100a + 10b + c)=1989

                 => 100a + 10b + c = 221

                 => abc = 221

                 => abc3 = 2213

              Vậy số cần tìm là 2213

2 tháng 4 2023

a) \(\frac{\sqrt{640}\sqrt{34,3}}{\sqrt{567}}\)

\(= \frac{\sqrt{64.10}\sqrt{49.\frac{7}{10}}}{\sqrt{81.7}}\)

\(= \frac{\sqrt{64}\sqrt{10}\sqrt{49}\sqrt{\frac{7}{10}}}{\sqrt{81}\sqrt{7}}\)

\(= \frac{\sqrt{64}\sqrt{49}}{\sqrt{81}} . \frac{\sqrt{10}\sqrt{\frac{7}{10}}}{\sqrt{7}}\)

\(= \frac{8.7}{9} . \frac{\sqrt{10 . \frac{7}{10}}}{\sqrt{7}}\)

\(= \frac{56}{9} . \frac{\sqrt{7}}{\sqrt{7}}\)

\(= \frac{56}{9} . 1 = \frac{56}{9}\)

b) \(\sqrt{21,6}\sqrt{810}\sqrt{11^2−5^2}\)

\(= \sqrt{216.\frac{1}{10}}\sqrt{81.10}\sqrt{(11−5)(11+5)}\)

\(= \sqrt{36.6.\frac{1}{10}}\sqrt{81}\sqrt{10}\sqrt{6.16}\)

\(= \sqrt{36}\sqrt{6}\sqrt{\frac{1}{10}}\sqrt{81}\sqrt{10}\sqrt{6}\sqrt{16}\)

\(= (\sqrt{36}\sqrt{81}\sqrt{16}).(\sqrt{6}\sqrt{6}).(\sqrt{\frac{1}{10}}\sqrt{10})\)

\(= (6.9.4).\sqrt{6.6}.\sqrt{\frac{1}{10}.10}\)

\(= (54.4).\sqrt{36}.\sqrt{1}\)

\(= 216.6.1 = 1296\)

25 tháng 6 2018

À mình nghĩ đề sai r, xin lỗi nha, mn ko cần làm nữa đâu ....

9 tháng 9 2018

vt mỗi cái đề cho người khác lm

haazzzzzzzzzzzzzzz

chi kute

19 tháng 11 2019

Áp dụng BĐT AM - GM:

\(\frac{3}{2}\ge a+b+c\ge3\sqrt[3]{abc}\) \(\Rightarrow abc\le\frac{1}{8}\)

\(1+1+1+\frac{1}{2a}+\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2b}\ge7\sqrt[7]{\frac{1}{16a^2b^2}}\)

\(\Leftrightarrow3+\frac{1}{a}+\frac{1}{b}\ge7\sqrt[7]{\frac{1}{16a^2b^2}}\)

Tương tự ta CM được:

\(3+\frac{1}{b}+\frac{1}{c}\ge7\sqrt[7]{\frac{1}{16b^2c^2}}\)

\(3+\frac{1}{c}+\frac{1}{a}\ge\ge7\sqrt[7]{\frac{1}{16c^2a^2}}\)

Nhân vế theo vế 3 bất đẳng thức trên:

\(S\ge343\sqrt[7]{\frac{1}{4096a^4b^4c^4}}\ge343\sqrt[7]{\frac{1}{4096.\frac{1}{8^4}}}=343\)

\(\Rightarrow Min_S=343\Leftrightarrow a=b=c=\frac{1}{2}\)

19 tháng 11 2019

@Nguyễn Việt Lâm

15 tháng 5 2016

Toán lớp 9

20 tháng 12 2019

lol