K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Định nghĩa[sửa | sửa mã nguồn]

  • Cho hai tập hợp A,B. Mỗi tập con {\displaystyle {\mathcal {R}}}{\displaystyle {\mathcal {R}}} của tích Descartes A x B được gọi là quan hệ hai ngôi từ A vào B. Nếu {\displaystyle {\mathcal {R}}}{\displaystyle {\mathcal {R}}} là quan hệ từ A vào B và cặp (a,b){\displaystyle \in {\mathcal {R}}}{\displaystyle \in {\mathcal {R}}} thì ta ký hiệu {\displaystyle a{\mathcal {R}}b}{\displaystyle a{\mathcal {R}}b}.
  • Nếu A = B thì một tập con {\displaystyle {\mathcal {R}}}{\displaystyle {\mathcal {R}}} của tích Descartes AxA được gọi là quan hệ trên A.
  • Mở rộng của quan hệ hai ngôi là quan hệ n ngôi dẫn đến cấu trúc bảng trong cơ sở dữ liệu quan hệ.
  • Lưu ý rằng tập tích Descarter là tập các cặp có thứ tự nên quan hệ định nghĩa ở đây là quan hệ có hướng từ A vào B. Ta hình dung như các phần tử thuộc tập A là các phần tử "chủ động" trong quan hệ, còn các phần tử của B (nếu có mặt trong quan hệ) là các phần tử "bị động". Điều lưu ý này rất hữu ích cho các quan hệ xã hội như quý và được quý, hâm mộ và bị hâm mộ, hay trong quan hệ bao hàm:chứa và được chứa trong...

Ví dụ[sửa | sửa mã nguồn]

  • Các quan hệ trong đời sống xã hội đều là các quan hệ theo nghĩa toán học: quan hệ hôn nhân (khác giới) là quan hệ từ tập người là nam vào tập người là nữ, quan hệ bạn bè, quan hệ đồng nghiệp, đồng hương, quan hệ chống đối... đều là các quan hệ giữa các tập người.
  • Các quan hệ trong toán như quan hệ bằng nhau, lớn hơn, nhỏ hơn giữa các số thực, quan hệ chia hết giữa các số tự nhiện....
  • Các quan hệ tuỳ ý giữa các tập hữu hạn có thể dẫn ra làm ví dụ rất nhiều, chẳng hạn cho A = {a, b, c, d}; B= {1, 2, 3}.

Quan hệ {\displaystyle {\mathcal {R}}}{\displaystyle {\mathcal {R}}}={ (a,1), (a, 2), (b, 2), (c, 2)}.

Để biểu diễn quan hệ (trên các tập hữu hạn), nhất là khi phải giải quyết các bài toán về quan hệ trên máy tính, ta có biểu diễn bằng ma trận logic hoặc bằng đồ thị

17 tháng 8 2018

Trong tiếng Việt, quan hệ là sự liên quan giữa hai đối tượng hoặc hai nhóm đối tượng, có thể có các ý nghĩa:

  • Trong toán học, một quan hệ là một sự tổng quát hóa của quan hệ số học, như "=" và "<" trong các mệnh đề đại loại như "5 < 6" và "2 + 2 = 4". Xem lý thuyết quan hệ, quan hệ hai ngôi, quan hệ tương đương, quan hệ thứ tự...
  • Trong tin học (mô hình hóa quan hệ), một quan hệ là một tập các bộ (tuple), hay còn gọi là bảng. Xem cơ sở dữ liệu quan hệ, đại số quan hệ...
  • Quan hệ xã hội: quan hệ huyết thống, quan hệ họ hàng, quan hệ hôn nhân, quan hệ tình dục, quan hệ bạn bè...
  • Quan hệ kinh tế: quan hệ thanh toán, quan hệ nợ nần, quan hệ hạch toán...
  • Quan hệ chính trị: quan hệ ngoại giao, quan hệ quốc tế...
  • Trong triết học, quan hệ nói về sự phụ thuộc vào nhau của các yếu tố (phần tử) trong một hệ thống nhất định (tập hợp), theo nghĩa chung nhất.
1 tháng 10 2018

anime

1 tháng 10 2018

1. chấm màu xanh là những người đang on(giống như facebook đấy)

2.hình anime

13 tháng 1 2018

1. Công thức tính tam giác thường

Diện tích tam giác bằng 1 phần 2 tích của chiều cao hạ từ định với độ dài cạnh đối diện của đỉnh đó

S(ABC) = 1/2*a*h

Với a là chiều dài cạnh đáy ở hình phía dưới là cạnh BC
h là chiều cao hạ từ đỉnh xuống cạnh đáy, ở hình dưới là AH

Thông thường chúng ta sẽ có 2 trường hợp là chiều cao nằm phía trong của tam giác giống như trường hợp sau:

S(ABC) = 1/2*BC*AH =1/2*6*7 =21 cm^2
 

Các công thức tính diện tích tam giác: thường, vuông, cân, đều


Ngoài ra với tam giác với chiều ca hạ xuống cạnh đáy nằm ngoài chúng ta cũng tính tương tự

S(B) = 1/2 * 4 * 7 = 14 cm^2
 

Các công thức tính diện tích tam giác: thường, vuông, cân, đều

Các công thức tính diện tích tam giác: thường, vuông, cân, đều


2. Tính diện tích tam giác vuông

Cũng có thể áp dụng công thức tính diện tích thường cho diễn tích tam giác vuông chiều cao chính là 1 trong 2 cạnh góc vuông và cạnh đáy là cạnh còn lại. Khi đó chúng ta sẽ có

S(ABC) = 1/2* AB * BC = 1/2 * 6 * 8 =24 cm^2
 

Các công thức tính diện tích tam giác: thường, vuông, cân, đều



3. Diện tích tam giác khi biết 3 cạnh a b c

Nếu bạn muốn tính diện tích tam giác khi biết độ dài của 3 cạnh thì chúng ta sẽ sử dụng công thức Heron đã được chứng mình:

 

Các công thức tính diện tích tam giác: thường, vuông, cân, đều


Với p = (a +b +c)/2

Hay chúng ta cũng có thể biết lại bằng công thức

 

Các công thức tính diện tích tam giác: thường, vuông, cân, đều


a, b, c lần lượt là độ dài của 3 cạnh tam giác

4. Tính diện tích tam giác theo sin

Diện tích tam giác bằng 1 phần 2 tích của 2 cạnh kề nhân với sin của góc được tạo bởi 2 cạnh đó
 

Các công thức tính diện tích tam giác: thường, vuông, cân, đều



Với những bài toán chưa cho đủ các thông số các bạn cần phải tìm những thông số để đưa về những công thức trên đây để tính dịch tích tam giác nhé. Ngoài ra có một số công thức khác nữa

5. Diện tích tam giác đều

Tam giác đều là tam giác có 3 cạnh bằng nhau, vì thế chúng ta có thể dễ dàng áp dụng định lý Heron để suy ra
 

Các công thức tính diện tích tam giác: thường, vuông, cân, đều

Với a là độ dài cạnh của tam giác đều

13 tháng 1 2018

TỔNG HỢP CÁCH TÍNH DIỆN TÍCH TAM GIÁC: THƯỜNG, VUÔNG, CÂN, ĐỀU

Để dễ hình dung hơn, Taimienphi.vn sẽ hướng dẫn các bạn cách tính diện tích hình tam giác theo thứ tự từ tổng quan, phổ biến tới chi tiết để các bạn dễ hình dung hơn nhé.

* Công Thức Tính Diện Tích Tam Giác Thường Trong Toán Học

- Diễn giải: Diện tích tam giác thường được tính bằng cách nhân chiều cao với độ dài đáy, sau đó tất cả chia cho 2. Nói cách khác, diện tích tam giác thường sẽ bằng 1/2 tích của chiều cao và chiều dài cạnh đáy của tam giác.

- Công thức tính diện tích tam giác thường: S = (A X H)/ 2

Trong đó:

+ a: Chiều dài đáy tam giác (đáy là một trong 3 cạnh của tam giác tùy theo quy đặt của người tính)
+ h: Chiều cao của tam giác, ứng với phần đáy chiếu lên (chiều cao tam giác bằng đoạn thẳng hạ từ đỉnh xuống đáy, đồng thời vuông góc với đáy của một tam giác).

- Công thức suy ra: H= (Sx2)/ A hoặc a= (Sx2)/ H

- Ví dụ: Cho một hình tam giác ABC, trong đó có chiều cao nối từ đỉnh Ảnh xuống đáy BC bằng 3, chiều dài đáy BC bằng 6. Tính diện tích tam giác thường ABC? (Đơn vị tính: cm)

cach tinh dien h tam giac

Đáp án: Gọi a =6 và h=3.

Suy ra S = (a x h)/ 2 = (6x3)/2 hoặc 1/2 x (6x3) = 9 cm

* Chú Ý: Trường hợp không cho cạnh đáy hoặc chiều cao, mà cho trước diện tích và cạnh còn lại, các bạn hãy áp dụng công thức suy ra ở trên để tính toán.

* Công Thức Tính Diện Tích Tam Giác Vuông Trong Toán Học

- Diễn giải: Công thức tính diện tích tam giác vuông tương tự với cách tính diện tích tam giác thường, đó là bằng1/2 tích của chiều cao với chiều dài đáy. Mặc dù vậy hình tam giác vuông sẽ khác biệt hơn so với tam giác thường do thể hiện rõ chiều cao và chiều dài cạnh đáy, và bạn không cần vẽ thêm để tính chiều cao tam giác.

- Công thức tính diện tích tam giác vuông: S = (A X H)/ 2

+ a: Chiều dài đáy tam giác vuông (đáy là một trong 3 cạnh của tam giác và vuông góc với một cạnh còn lại)
+ h: Chiều cao của tam giác, ứng với phần đáy chiếu lên (chiều cao tam giác bằng đoạn thẳng hạ từ đỉnh xuống đáy, đồng thời vuông góc với đáy của một tam giác).

- Công thức suy ra: H=(Sx2)/ A hoặc A= (Sx2)/ H

- Ví dụ: Có một hình tam giác vuông ABC, vuông góc nhau tại điểm B, chiều dài cạnh đáy BC là 5 cm, chiều cao là 2 cm. Hỏi diện tích của hình tam giác vuông ABC bằng bao nhiêu? Đơn vị tính: cm.

tinh dien h tam giac thuong

Đáp án: Gọi a =5 và h=2.

Suy ra S = (a x h)/ 2 = (5x2)/2 hoặc 1/2 x (5x2) = 5 cm

Tương tự nếu dữ liệu hỏi ngược về cách tính chiều dài cạnh đáy hoặc chiều cao, các bạn có thể sử dụng công thức suy ra ở trên.

* Công Thức Tính Diện Tích Tam Giác Cân Trong Toán Học

Tam giác cân là tam giác trong đó có hai cạnh bên và hai góc bằng nhau. Trong đó cách tính diện tích tam giác cân cũng tương tự cách tính tam giác thường, chỉ cần bạn biết chiều cao tam giác và cạnh đáy.

- Diễn giải: Diện tích tam giác cân bằng Tích của chiều cao nối từ đỉnh tam giác đó tới cạnh đáy tam giác, sau đó chia cho 2.

- Công thức tính diện tích tam giác cân: S = (A X H)/ 2

+ a: Chiều dài đáy tam giác cân (đáy là một trong 3 cạnh của tam giác)
+ h: Chiều cao của tam giác (chiều cao tam giác bằng đoạn thẳng hạ từ đỉnh xuống đáy).

- Ví dụ: Cho một tam giác cân ABC có chiều cao nối từ đỉnh A xuống đáy BC bằng 7 cm, chiều dài đáy cho là 6 cm. Hỏi diện tích của tam giác cân ABC bằng bao nhiêu.

tinh dien h tam giac vuong

Đáp án: Gọi a =6 và h=7.

Suy ra S = (a x h)/ 2 = (6x7)/2 hoặc 1/2 x (6x7) = 21 cm

* Công Thức Tính Diện Tích Tam Giác Đều Trong Toán Học

Tam giác đều là tam giác có 3 cạnh bằng nhau và mỗi góc trong tam giác đều có góc bằng 60 độ, và bất cứ tam giác nào có ba góc bằng nhau cũng được coi là một tam giác đều.

- Công thức tính diện tích tam giác đều:  S = A2 X (√3)/4

Trong đó:

+ a: chiều dài một cạnh bất kỳ trong tam giác đều.

- Ví dụ: Có một tam giác đều ABC với chiều dài các cạnh bằng nhau là 9 cm, biết các góc của tam giác này đều bằng 60 độ. Hỏi diện tích tam giác đều ABC bằng bao nhiêu?

tinh dien h tam giac can

Đáp án: Do mỗi cạnh AB = AC = BC = 9 nên ta có chiều dài cạnh a = 9.

Thay vào công thức tính diện tích tam giác đều ta có: S = a2 x (√3)/4 = S = 92 x (√3)/4  = 81 x  (√3)/4 = 81 x  (1,732/4) = 35,07 cm

Ngoài ra còn rất nhiều cách tính diện tích tam giác khác khi người dùng biết được tất cả các cạnh, ví dụ như sử dụng công thức Heron, tính diện tích tam giác bằng góc và hàm lượng giác.

Dù sử dụng công thức tính diện tích tam giác nào đi chăng nữa thì các bạn, các em học sinh, sinh viên cần hiểu rằng, không phải lúc chiều cao cũng nằm trong tam giác, lúc này cần vẽ thêm một chiều cao và cạnh đáy bổ sung. Và quan trọng khi tính diện tích tam giác, cần chú ý chiều cao phải ứng với cạnh đáy nơi nó chiếu xuống.

13 tháng 9 2017

Tính các số ra số tự nhiên rồi cộng chúng lại với nhau

26 tháng 9 2018

chia k/c +1 

nha bn 

k nha

26 tháng 9 2018

cộng 1 nha bạn.

Hệ thập phân (hệ đếm cơ số 10) là hệ đếm dùng số 10 làm cơ số. Đây là hệ đếm được sử dụng rộng rãi nhất trong các nền văn minh thời hiện đại.

Hệ nhị phân (hay hệ đếm cơ số hai) là một hệ đếm dùng hai ký tự để biểu đạt một giá trị số, bằng tổng số các lũy thừa của 2. Hai ký tự đó thường là 0 và 1; chúng thường được dùng để biểu đạt hai giá trị hiệu điện thế tương ứng (có hiệu điện thế, hoặc hiệu điện thế cao là 1 và không có, hoặc thấp là 0). Do có ưu điểm tính toán đơn giản, dễ dàng thực hiện về mặt vật lý, chẳng hạn như trên các mạch điện tử, hệ nhị phân trở thành một phần kiến tạo căn bản trong các máy tính đương thời.

Trong toán học, một số tự nhiên là một số nguyên dương (1, 2, 3, 4,...) hoặc là một số nguyên không âm (0, 1, 2, 3, 4,...). Nhìn chung, định nghĩa đầu thường được dùng trong lý thuyết số, trong khi định nghĩa sau được thích dùng hơn tronglý thuyết tập hợp và khoa học máy tính.

12 tháng 1 2016

dùng máy tính CASIO ấn ra là 1.2676506*1030 =1.2676506*107 *1023

                                                                   =12676506*1023

Vì 12676506 có 8 số và 1023 có 23 số 

cộng lại được 31 số

29 tháng 5 2018

đẳng thức nói lên mối liên hệ giữa một số đại lượng nào đó.

có thể dùng cho tất cả nha bạn 

A=mở ngoặc nhọn x,u,a,n,d,g đóng ngoặc nhọn

cái chỗ đó là mimnhf làm đúng nha bạn đừng cho các chữ giống nhau vào