Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(11x=8y\Rightarrow\dfrac{x}{8}=\dfrac{y}{11}\) (1)
\(7y=11z\Rightarrow\dfrac{y}{11}=\dfrac{z}{7}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{11}=\dfrac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\dfrac{x}{8}=\dfrac{y}{11}=\dfrac{z}{7}=\dfrac{10z}{70}=\dfrac{x+y-10z}{8+11-70}=\dfrac{-102}{-51}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=2\\\dfrac{y}{11}=2\\\dfrac{z}{7}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2.8\\y=2.11\\z=2.7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=16\\y=22\\z=14\end{matrix}\right.\)
Vậy x = 16, y = 22, z = 14.
a) \(A=-11x^5+4x-12x^2+11x^5+13x^2-7x+2\)
\(A=\left(-11x^5+11x^5\right)+\left(-12x^2+13x^2\right)+\left(4x-7x\right)+2\)
\(A=0+x^2+\left(-3x\right)+2\)
\(A=x^2-3x+2\)
Bậc của đa thức là: \(2\)
Hệ số cao nhất là: \(1\)
b) Ta có: \(M\left(x\right)=A\left(x\right)\cdot B\left(x\right)\)
\(\Rightarrow M\left(x\right)=\left(x^2-3x+2\right)\cdot\left(x-1\right)\)
\(\Rightarrow M\left(x\right)=x^3-x^2-3x^2+3x+2x-2\)
\(\Rightarrow M\left(x\right)=x^3-4x^2+5x-2\)
c) A(x) có nghiệm khi:
\(A\left(x\right)=0\)
\(\Rightarrow x^2-3x+2=0\)
\(\Rightarrow x^2-x-2x+2=0\)
\(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
`a,`
`A(x)=`\(5x^4-7x^2-3x-6x^2+11x-30\)
`= 5x^4+(-7x^2-6x^2)+(-3x+11x)-30`
`= 5x^4 -13x^2+8x-30`
`B(x)=`\(11x^3+5x-10+13x^4-2+20x^3-34x\)
`= 13x^4+(11x^3+20x^3)+(5x-34x)+(-10-2)`
`= 13x^4+31x^3-29x-12`
A(x)= (11x5 - 11x5) + (13x2 - 12x2) - (7x - 4x) + 2 = x2 - 3x + 2
Bậc đa thức: Đa thức bậc 2
Hệ số bậc cao nhất (ít ai hỏi hệ số cao nhất lắm): 1
x : a = 11
x = 11 . a