Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hình thoi cũng là hình bình hànhs
b) Vì \(ABCD\) là hình thoi (gt)
Suy ra \(ABCD\) cũng là hình bình hành
Suy ra \(O\) là trung điểm của \(AC\) và \(BD\)
Suy ra \(OA = OC\); \(OB = OD\)
Các tam giác \(OAB\); \(OCB\); \(OCD\); \(OAD\) bằng nhau theo trường hợp c-c-c
a) Theo tính chất của hình bình hành, hai đường chéo của hình thoi có tính chất cắt nhau tại trung điểm mỗi đường
b) Xét ΔAOB và ΔCOB
AB = CB
BO chung
OA = OC ( O là trung điểm AC )
⇒ ΔAOB = ΔCOB (c.c.c)
⇒ (AOB) = (COB) ,(ABO) = (CBO) (các cặp góc tương ứng)
(ABO) = (CBO) ⇒ BO là phân giác góc ABC
(AOB) + (COB) = 180o ⇒(AOB) = (COB) = 180o : 2 = 90o
Chứng minh tương tự, ta kết luận được:
AC, BD là các đường phân giác của các góc của hình thang
và AC ⊥ BD tại O
Có
Nghĩ thế :))