Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tớ ở Vĩnh Phúc cậu ạ , nhận được trả lời của cậu , thì ... tớ thi xong rồi , dù sao cũng cảm ơn .
Ở kì sau, 2 cromatit trong từng NST kép tách nhau thành 2 NST đơn.
=> Ở kì sau, trong các tế bào có số NST gấp đôi: 2.2n = 2.8 = 16 NST
=> Đáp án c.
* Kì sau của nguyên phân :
Số NST trong tế bào : 4n NST đơn = 2n x 2 = 8x 2=16 NST
=> Chọn câu C
+Số lượng NST trong bộ lưỡng bội không phản ánh trình độ tiến hóa của loài. Ta có thể thấy bằng cách so sánh số lượng NSTcủa người so với các loài còn lại.
Ví dụ: người 2n= 46 NST trong khi đó tinh tinh 2n=48, gà 2n=78...
SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH BÀ RỊA – VŨNG TÀU THPT Chuyên Lê Qúy Đôn | KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN NĂM HỌC 2016 – 2017 Môn: TOÁN (Chuyên) Thời gian làm bài: 150 phút Ngày thi: 31/5/2016 |
ĐỀ CHÍNH THỨC
Câu 1 (3,0 điểm).
a) Rút gọn biểu thức với
b) Giải phương trình
c) Giải hệ phương trình
Câu 2 (2,0 điểm).
a) Tìm tất cả các cặp số nguyên tố (p; q) thỏa mãn p2 - 5q2 = 4
b) Cho đa thức ƒ(x) = x2 + bx + c. Biết b, c là các hệ số dương và ƒ(x) có nghiệm. Chứng minh ƒ(2) ≥ 93√c.
Câu 3 (1,0 điểm).
Cho x, y, z là 3 số dương thỏa mãn x2 + y2 + z2 = 3xyz. Chứng minh:
Câu 4 (3,0 điểm).
Cho hai đường tròn (O) và (0') cắt nhau tại A và B (OO' > R > R'). Trên nửa mặt phẳng bờ là OO' có chứa điểm A, kẻ tiếp tuyến chung MN của hai đường tròn trên (với M thuộc (O) và N thuộc (O')). Biết BM cắt (O') tại điểm E nằm trong đường tròn (O) và đường thẳng AB cắt MN tại I.
a) Chứng minh ∠MAN + ∠MBN = 180o và I là trung điểm của MN
b) Qua B, kẻ đường thẳng (d) song song với MN, (d) cắt (O) tại C và cắt (O') tại D (với C, D khác B). Gọi P, Q lần lượt là trung điểm của CD và EM. Chứng minh tam giác AME đồng dạng với tam giác ACD và các điểm A, B, P, Q cùng thuộc một đường tròn.
c) Chứng minh tam giác BIP cân.
Câu 5 (1,0 điểm).
Cho tam giác ABC có ba góc nhọn và H là trực tâm.
Chứng minh .
sách lớp 9 môn sinh ý ạ