K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

http://123doc.org/document/1883740-phuong-phap-dung-truc-toa-do-trong-bai-hinh-hoc-khong-gian-new.htm

30 tháng 4 2016

mk k copy đc link b ơi

 

4 tháng 2 2018

Ta chọn hệ trục tọa độ sao cho các đỉnh của hình lập phương có tọa độ là:

A(0; 0; 0), B(1;0; 0), D(0; 1; 0)

B’(1; 0 ; 1), D’(0; 1; 1), C’ (1; 1; 1)

d((AB′D′),(BC′D)) = d(A,(BC′D)) = 1/ 3

20 tháng 1 2019

Mặt phẳng (BC’D) có VTPT Giải bài 10 trang 81 sgk Hình học 12 | Để học tốt Toán 12 (1;1; -1) và qua B (1; 0;0) nên có phương trình:

1( x- 1) + 1( y – 0) - 1( z- 0)= 0 hay x + y - z - 1 = 0

Khoảng cách giữa hai mặt phẳng song song (AB’D’) và (BC’D) chính là khoảng cách từ A đến (BC’D) và bằng :

Giải bài 10 trang 81 sgk Hình học 12 | Để học tốt Toán 12

23 tháng 5 2017

Giải bài 10 trang 91 sgk Hình học 12 | Để học tốt Toán 12

Đặt hình lập phương ABCD.A'B'C'D' vào hệ trục Oxyz sao cho O(0;0;0) ≡ A

*mp(B'D'C')//mp(A'BD) vì (B'C//A'D và D'C//A'B) nên pt của mp (B'D'C) có dạng x+y+z+D=0 (D ≠ -1)

mp(B'D'C) đi qua điểm C(1;1;0) <=>D=-2

Suy ra pt của mp(B'D'C) là: x+y+z-z=0 

29 tháng 4 2018

26 tháng 5 2017

Hình giải tích trong không gian

6 tháng 4 2017

Chọn hệ trục tọa độ Oxyz sao cho A)0 ; 0 ; 0), B(1 ; 0 ; 0), D(0 ; 1; 0), A'(0 ; 0 ; 1)

Khi đó

B'(1 ; 0 ; 1), D'(0 ; 1 ; 1), C(1 ; 1 ; 0). Phương trình mặt phẳng (A'BD) có dạng:

x + y + z - 1 = 0. (1)

Ta tìm được phương trình mặt phẳng (B'D'C):

Vectơ: (0 ; -1 ; 1) ; (-1 ; 0 ; 1).

Mặt phẳng (B'D'C) qua điểm C và nhận = (-1 ; -1 ; -1 ) làm vectơ pháp tuyến. Phương trình mặt phẳng (B'D'C) có dạng:

x + y + z - 2 = 0 (2)

Ta có


11 tháng 7 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta chọn hệ trục tọa độ sao cho: C là gốc tọa độ,  CD → = a i → ;  CB → = a j → ;  CC ' → = a k →

Trong hệ tọa độ vừa chọn ta có: C(0; 0; 0), A’(a; a ; a), D(a; 0; 0), D’(a; 0; a)

CA ' →  = (a; a; a),  DD ' →  = (0; 0; a)

 

Gọi ( α ) là mặt phẳng chứa  CA ' → và song song với  DD ' → . Mặt phẳng ( α ) có vecto pháp tuyến là: n →  =  CA ' →    DD ' →  = ( a 2 ; − a 2 ; 0) hay x – y = 0

Phương trình tổng quát của ( α ) là x – y = 0.

Ta có:

d(CA′, DD′) = d(D,( α )) = Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy khoảng cách giữa hai đường thẳng CA’ và DD’ là Giải sách bài tập Toán 12 | Giải sbt Toán 12