Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5\cdot\left(x^2-3x+1\right)+x\cdot\left(1-5x\right)\right)-\left(x-2\right)=0\)
\(7-15x=0\)
\(-15x=-7\)
\(x=\frac{7}{15}=0.467\)
\(b,\)câu b dài quá nên mik lười, vậy mik ghi kết quả thôi nhé
\(x=\frac{2}{19}=0.105\)
\(c,\)câu c cũng vậy mik ghi kết quả thôi nhé bn
\(x=-\frac{6}{11}=-0.545\)
\(\left(x+5\right)^2=x^2+10x+25\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
k mk nha
( x + 5 )2 = x2 + 2.x.5 + 52
= x2 + 10x + 25
x3 + y3 = ( x + y )(x2 - x.y + y2)
#cool #
1) \(21x^2+21y^2+z^2\)
\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)
\(\ge9\left(x+y\right)^2+z^2+3.2xy\)
\(\ge2.3\left(x+y\right).z+6xy\)
\(=6\left(xy+yz+zx\right)=6.13=78\)
Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6
2) \(x+y+z=3xyz\)
<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)
Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3
Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)
Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)
\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)
Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)
Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\); \(b=2\sqrt{\frac{3}{5}}\)
khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)
\(x^2+21x=1296\)
x.x+21x=1296
x.(x+21)=1296
=>x và x+21 thuộc Ư(1296)
còn lại bạn tự tính
\(x^2+21x=1296\Leftrightarrow x^2+21x-1296=0\)
\(\Leftrightarrow x^2-27x+48x-1296=0\)
\(\Leftrightarrow x\left(x-27\right)+48\left(x-27\right)=0\)
\(\Leftrightarrow\left(x-27\right)\left(x+48\right)=0\Leftrightarrow\orbr{\begin{cases}x-27=0\\x+48=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=27\\x=-48\end{cases}}\)
Tập nghiệm của phương trình là \(S=\left\{27;-48\right\}\)