K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

Ta có: -17-(x-3)2 có giá trị lớn nhất

Mà mũ hai luôn là 1 số tự nhiên.

=> mà nếu các số tự nhiên lớn hơn 0 hoặc nhỏ hơn 0 bình phương lên cũng luôn lớn hơn 0.

Mà một số trừ một số lớn hơn 0 đều nhỏ hơn nó.

=>(x-3)2=0

Mà: -17-0=-17

=> Giá trị lớn nhất (GTLN) là -17

12 tháng 7 2016

Ta có : \(\left(x-3\right)^2\ge0\Leftrightarrow-\left(x-3\right)^2\le0\Leftrightarrow-\left(x-3\right)^2-17\le-17\)

Vậy Max = -17 <=> x = 3

10 tháng 9 2015

a)-(x-3)2<=0

-17-(x-3)2<=-17

GTLN là -17

 

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

7 tháng 12 2016

Tất nhiên là được 

7 tháng 12 2016

Ta có: \(A=\frac{2x^2-16x+33}{x^2-8x+17}=\frac{\left(2x^2-16x+34\right)-1}{x^2-8x+17}\)

\(=2-\frac{1}{x^2-8x+17}\)

Ta thấy rằng A bé nhất khi x2 - 8x + 17 bé nhất

x2 - 8x + 17 = (x2 - 8x + 16) + 1 = (x - 4)2 + 1\(\ge1\)

=>  x2 - 8x + 17 bé nhất = 1 khi x = 4

Vậy A bé nhất bằng 2 - 1 = 1 khi x = 4

24 tháng 2 2020

B= 6x+11/x^2-2x+3

= 9(x^2-2x+3)-9x^2+18x-27+6x+11/ x^2-2x+3

= 9 +

-(3x-4)^2/(x-1)^2+2

Vì (3x-4)^2 > hoặc = 0 với mọi x

=> -(3x-4)^2< hoặc =0

(x-1)^2+2>0 với mọi x

=> -(3x-4)^2/(x-1)^2+2< hoặc=0

=> B< hoặc =9

Vậy GTLN của B=9 khi x=4/3

Làm tương tự ta có gtnn của B=-1/2 khi x=-5

Chúc bạn học tốt!

24 tháng 2 2020

ban giai jup mik GTNN vs

NV
22 tháng 4 2021

\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)

\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)

\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)

\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)

\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)

\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)