Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N
Ta có BM=MC và BN=AN => MN là đường trung bình của tam giác ABC
=>BM // BC => BMCA là hình thang
Mặt khác: Â=90 độ =>BMCA là hình thang vuông
a) Xét tứ giác RMSC có: \(\widehat{C}=\widehat{S}=\widehat{R}=90^o\) nên RMSC là hình chữ nhật.
Vậy thì hai đường chéo RS và CM bằng nhau và cắt nhau tại trung điểm mỗi đường.
b)
Do tam giác ABC là tam giác vuông nên trung tuyến CO = AO = OB.
Cũng do tam giác ABC là tam giác vuông cân nên \(\widehat{A}=45^o\) và CO là trung tuyến đồng thời là phân giác.
Vậy thì \(\widehat{OCB}=45^o\)
Xét tam giác ARM có \(\widehat{ARM}=90^o;\widehat{RAM}=45^o\) nên ARM là tam giác cân tại R.
Suy ra RA = RM, mà RM = CS nên CS = AR.
Xét tam giác ARO và tam giác CSO có:
AO = CO
AR = CS
\(\widehat{OAR}=\widehat{OCS}=45^o\)
\(\Rightarrow\Delta ARO=\Delta CSO\left(c-g-c\right)\)
\(\Rightarrow RO=SO;\widehat{AOR}=\widehat{COS}\)
Vậy tam giác ORS cân tại O.
Lại có \(\widehat{ROS}=\widehat{ROC}+\widehat{COS}=\widehat{ROC}+\widehat{AOR}=90^o\)
Vậy nên tam giác ROS là tam giác vuông cân tại O.
Bài giải :
a) Xét tứ giác RMSC có: ^C=^S=^R=90o nên RMSC là hình chữ nhật.
Vậy thì hai đường chéo RS và CM bằng nhau và cắt nhau tại trung điểm mỗi đường.
b)
Do tam giác ABC là tam giác vuông nên trung tuyến CO = AO = OB.
Cũng do tam giác ABC là tam giác vuông cân nên ^A=45o và CO là trung tuyến đồng thời là phân giác.
Vậy thì ^OCB=45o
Xét tam giác ARM có ^ARM=90o;^RAM=45o nên ARM là tam giác cân tại R.
Suy ra RA = RM, mà RM = CS nên CS = AR.
Xét tam giác ARO và tam giác CSO có:
AO = CO
AR = CS
^OAR=^OCS=45o
⇒ΔARO=ΔCSO(c−g−c)
⇒RO=SO;^AOR=^COS
Vậy tam giác ORS cân tại O.
Lại có ^ROS=^ROC+^COS=^ROC+^AOR=90o
Vậy nên tam giác ROS là tam giác vuông cân tại O.
a) Tứ giác AKBC có:AB,KC là hai đường chéo cắt nhau tại D và
DA=DB(gt)
DC=DK(gt)
=>Tứ giác AKBC là hình bình hành
=>AK=BC (1)
Tứ giác AICB có BI,AC là hai đường chéo cắt nhau tại E mà:
EA=EC(gt)
EB=EI(gt)
=>Tứ giác AICB là hình bình hành
=>AI=BC (2)
Từ (1)(2) suy ra: AK=AI
=>A là trung điểm của KI
1/ a/ BC = \(\sqrt{5^2+12^2}\)= 13 (cm) (định lí Pytago)
Vì AM là đường trung tuyến ứng với cạnh BC nên AM = 1/2 BC = 1/2 x 13 = 6,5 (cm)
b/ Ta có: \(\widehat{DAE}=\widehat{MDA}=\widehat{MEA}=\)90 độ
=> Tứ giác ADME là hình chữ nhật
c/ AM là phân giác của \(\widehat{BAC}\)
[ học toán ngu nhất là cm câu c :"< mấy câu giống vậy anh bỏ hết ]
(x-y)2 >= 0 với mọi x,y
x2+y2 >= 2xy ...
hay 2xy <= x2+y2
x2+y2+2xy <= 2(x2+y2)
(x+y)2 <= 2
GTLN của (x+y)2 là 2
(>= là lớn hơn hoặc =;<= là nhỏ hơn hoặc =)
1 - 1 - 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1===================================================================================================================++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++=222222222222222222222222222222222222222222222222222222222222222222222222222223333333333333333333333333333333333333333333333333334444444444444444444444444444444444444444444455555555555555555555555555555555555556666666666666666666666666666666666666667777777777777777777777777777778888888888888888888899999999999999999999999999999991010101010101010101010101010101010101010101010101010101010000000000000000000000000000000000000000-----------------------------------------------------------------------------------------------------------------------------------------------,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;::::::::::::::::::::::::::::::::::::::::::::::::::::;;;;;;;.................................................................///////////////////////////////////////////////
\(3=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(a+b+c\le3\)
\(P=\frac{\sqrt{4\left(a+3\right)}+\sqrt{4\left(b+3\right)}+\sqrt{4\left(c+3\right)}}{2}\le\frac{a+b+c+21}{4}\le6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
bạn vẽ hình ra giấy rồi xem bài mình nhé
a) vì MF ; NE lần lượt là đường trung bình của tg BGA và CGA
=> MF // NE và MF = NE
=> FENM là hbhành
b) Nếu MNEF là hcn
=> FN = ME
mà FN = 2/3 FC ; EM = 2/3 BE
=> BE = CF
tg ABC có BE và CF là 2 đường trung tuyến ứng với cạnh AC và AB bằng nhau
=> tg ABC cân ở A
ko biết nữa
SP : là điểm hỏi đáp do học sinh tích đúng
GP : là điểm hỏi đáp do giáo viên tích đúng
Hok tốt