Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8x\left(x-2\right)-3\left(x^2-4x-5\right)-5x^2\)
\(=8x^2-16x-3x^2+12x+15-5x^2\)
\(=15-4x\)
`8x(x-2) -3 (x^2 -4x-5)-5x^2`
`= 8x^2 - 16x - 3x^2 +12x+15 - 5x^2`
`= (8x^2 - 3x^2 - 5x^2)+(-16x +12x)+15`
`= -4x +15`
Bài 1:
\(a,=15x^4-12x^3+9x^2\\ b,=-15x^3y^2+25x^2y^2-5xy^3\\ c,=5x^3-15x^2-4x^2+12x=5x^3-19x^2+12x\\ d,=3x^3-9x^2y+xy^2-3y^3+5x^2y-15xy^2=3x^3-3y^3-4x^2y-14xy^2\)
Bài 2:
\(a,=x^2+4x-21-x^2-4x+5=-16\\ b,=x^2+16x+64-2x^2-12x+32+x^2-4x+4=100\\ c,=x^4-16x^2-x^4+1=1-16x^2\\ d,=x^3+1-x^3+1=2\)
\(\left(2x+5\right)\left(x-2\right)-3\left(x+2\right)^2+\left(x+1\right)^2\)
\(=2x^2+x-10-3x^2-12x-12+x^2+2x+1=-9x-21\)
1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)
\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)
2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)
\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)
4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)
\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)
a) = \(x^2-6x+11\)
= \(x^2-2.3x+3^2+2\)
= \(\left(x-3\right)^2+2\ge2\left(do\left(x-3\right)^2\ge0\right)\)
Vậy min = 2 khi x-3=0<=> x=3
b) = \(-\left(x^2-6x+11\right)\)
= \(-\left(x^2-2.x.3+3^2\right)-2\)
= \(-2-\left(x-3\right)^2\le-2\left(do\left(x-3\right)^2\ge0\right)\)
Vậy max=-2 khi x-3 =0 <=> x=3
Chắc chắn đúng. mik nhé! Tks banj~~~ (:
Dạng bài này phải là dễ, à k phải nói là quá dễ. Do tối rồi nên mình chỉ có thể giải giúp bạn bài tập thôi, còn muốn mình giảng thì nhắn tin riêng cho mình nhé! :")
A = x^2 - 6x + 11 = (x^2 - 6x + 9 ) + 2 = (x-3)^2 + 2
Vì (x-3)^2 >/= 0 với mọi x nên A=(x-3)^2 +2 >/= 2
Suy ra GTNN của A bằng 2 khi : x - 3 =0 hay x=3