Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x=9\)thỏa mãn đk
\(\Rightarrow\)Thay \(x=9\)vào biểu thức ta được:
\(A=\frac{3\sqrt{9}}{1-\sqrt{9}}=\frac{9}{-2}=\frac{-9}{2}\)
b) Với x thỏa mãn ĐKXĐ thì ta có:
\(B=\frac{1}{\sqrt{x}+2}-\frac{x+12}{4-x}-\frac{4}{\sqrt{x}-2}\)
\(=\frac{1}{\sqrt{x}+2}+\frac{x+14}{x-4}-\frac{4}{\sqrt{x}-2}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{x+12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)+\left(x+12\right)-4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2+x+12-4\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
1. x = 9 => A = \(\frac{3\sqrt{9}}{1-\sqrt{9}}=\frac{9}{-2}=-\frac{9}{2}\)
2. \(B=\frac{1}{\sqrt{x}+2}-\frac{x+12}{4-x}-\frac{4}{\sqrt{x}-2}=\frac{\sqrt{x}-2+x+12-4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x-\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
3. \(AB>-\frac{3}{4}\) <=> \(\frac{3\sqrt{x}}{1-\sqrt{x}}\cdot\frac{\sqrt{x}-1}{\sqrt{x}+2}>-\frac{3}{4}\)
<=> \(-\frac{3\sqrt{x}}{\sqrt{x}+2}+\frac{3}{4}>0\)
<=> \(\frac{12\sqrt{x}-3\sqrt{x}-4}{4\left(\sqrt{x}+2\right)}< 0\)
<=> \(\frac{9\sqrt{x}-4}{4\sqrt{x}+8}< 0\)
Do \(4\sqrt{x}+8>0\)với mọi x => \(9\sqrt{x}-4< 0\) <=> \(x< \frac{16}{81}\)
Ta có: \(B=\frac{9\sqrt{a}-\sqrt{25a}+\sqrt{4a^3}}{a^2+2a}\)
\(=\frac{9\sqrt{a}-5\sqrt{a}+2a\sqrt{a}}{a\left(a+2\right)}\)
\(=\frac{\sqrt{a}\left(4+2a\right)}{a\left(a+2\right)}=\frac{2\sqrt{a}\left(a+2\right)}{\sqrt{a}\cdot\sqrt{a}\cdot\left(a+2\right)}\)
\(=\frac{2}{\sqrt{a}}\)
Ta có: \(C=\left(\frac{x-\sqrt{x}+2}{x-\sqrt{x}-2}-\frac{x}{x-2\sqrt{x}}\right):\frac{1-\sqrt{x}}{2-\sqrt{x}}\)
\(=\left(\frac{\sqrt{x}\left(x-\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\frac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right)\cdot\frac{2-\sqrt{x}}{1-\sqrt{x}}\)
\(=\frac{x\sqrt{x}-x+2\sqrt{x}-x\sqrt{x}-x}{\sqrt{x}\cdot\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{-2x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-2}{\sqrt{x}+1}\)
a) \(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}=\frac{1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}=\frac{2\sqrt{x}}{x-1}\)( x > 0 ; x ≠ 1 )
b) \(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)( x > 0 ; x ≠ 4 )
a) Với \(x>0\)và \(x\ne1\)ta có:
\(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}+1\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+1+\sqrt{x}-1+x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) Với \(x>0\)và \(x\ne4\)ta có:
\(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)-2\left(\sqrt{x}+2\right)+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)
B=\(\frac{x\sqrt{x}-1}{x-1}\)(x>0,x≠1)
=\(\frac{\sqrt{x^3}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
ĐKXĐ\(\left\{{}\begin{matrix}x\ge0\\4-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-x\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Cậu nhầm ở chỗ chuyển từ dương 4 sang thì phải thành -4