Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này bạn thay x=0 và y=1 vào rồi ta sẽ có thế này nha:
(m+1)*0+n=1
=>0+n=1
=>n=1
\(A=\left(\dfrac{\sqrt{x}-2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}+2}{x-1}\right):\dfrac{2\sqrt{x}}{x-1}\)
\(=\left(\dfrac{\sqrt{x}-2}{\sqrt{x}^2+2\sqrt{x}+1^2}-\dfrac{\sqrt{x}+2}{\sqrt{x}^2-1^2}\right).\dfrac{x-1}{2\sqrt{x}}\)
\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{x-1}{2\sqrt{x}}\)
Tới đây là có được mẫu chung ở dấu = thứ 2 rồi.
\(A=\left(\dfrac{\sqrt{x}-2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}+2}{x-1}\right):\dfrac{2\sqrt{x}}{x-1}\) ( với x>0;\(x\ne1\) )
\(=\left[\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right].\dfrac{x-1}{2\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-1\right)}.\dfrac{x-1}{2\sqrt{x}}\)
\(=.....\) ( theo như trên )
Bởi vì ta có tính chất:
`a>=b>0=>1/a<=1/b`
GTLN bởi vì có dấu `<=`
a: |2x|=x-4
TH1: x>=0
=>2x=x-4
=>x=-4(loại)
TH2: x<0
=>-2x=x-4
=>-3x=-4
=>x=4/3(loại)
b: 7-|2x+1|=x
=>|2x+1|=7-x
TH1: x>=-1/2
=>2x+1=7-x
=>3x=6
=>x=2(nhận)
TH2: x<-1/2
=>2x+1=x-7
=>x=-8(nhận)
\(\left|2x\right|=x-4\)
\(TH_1:x\ge0\\ 2x=x-4\Leftrightarrow2x-x=-4\Leftrightarrow x=-4\left(ktm\right)\)
\(TH_2:x< 0\\\Leftrightarrow-2x=x-4\Leftrightarrow-2x-x=-4\Leftrightarrow-3x=-4\Leftrightarrow x=\dfrac{4}{3}\left(ktm\right) \)
Vậy pt vô nghiệm.
\(7-\left|2x+1\right|=x\\ \Leftrightarrow\left|2x+1\right|=7-x\)
\(TH_1:x\ge-\dfrac{1}{2}\)
\(2x+1=7-x\Leftrightarrow2x+x=7-1\Leftrightarrow3x=6\Leftrightarrow x=2\left(tm\right)\)
\(TH_2:x< -\dfrac{1}{2}\\ -2x-1=7-x\Leftrightarrow-2x+x=7+1\Leftrightarrow-x=8\Leftrightarrow x=-8\left(tm\right)\)
Vậy \(S=\left\{-8;2\right\}\)
Về lý thuyết thì có thể tính toán chính xác được điểm rơi mà ko cần đoán, nhưng thực tế thì dạng này thường tách A để xuất hiện \(a+2b+3c\) và phần còn lại sẽ tự ghép:
\(4A=4a+4b+4c+\dfrac{12}{a}+\dfrac{18}{b}+\dfrac{16}{c}\)
\(\Rightarrow4A=a+2b+3c+\left(3a+\dfrac{12}{a}\right)+\left(2b+\dfrac{18}{b}\right)+\left(c+\dfrac{16}{c}\right)\)
\(\Rightarrow4A\ge20+2\sqrt{\dfrac{36a}{a}}+2\sqrt{\dfrac{36b}{b}}+2\sqrt{\dfrac{16c}{c}}=...\)
cái này thì ko nhất thiết phải Cm nha bạn
Câu b kêu tìm x để B ko nhỏ hơn hoặc bằng A
Nghĩa là
\(\dfrac{4}{3-\sqrt{x}}>1\)
\(\Leftrightarrow\dfrac{4}{3-\sqrt{x}}-1>0\)
\(\Leftrightarrow\dfrac{4-\left(3-\sqrt{x}\right)}{3-\sqrt{x}}>0\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{3-\sqrt{x}}>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}+1>0\\3-\sqrt{x}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}+1< 0\left(VL\right)\\3-\sqrt{x}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow3-\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}< 3\)
\(\Leftrightarrow x< 9\)
Theo Đk ta có x≥0
Vậy 0≤x<9 thì B ko nhỏ hơn hoặc bằng A
\(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1\ge1>0\)
Hiển nhiên nhé
gọi (a+b)=x,c=y
=>\(\left[\left(a+b\right)+c\right]^2=\left(x+y\right)^2\ge4xy=4\left(a+b\right)c\)
cái của bạn hơi sai sai phải là (b+c)4(b+c).a\(\ge\)16abc
dấu bằng xảy ra khi b=c=\(\dfrac{a}{2}\)