Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Đường thẳng ∆ đi qua điểm M( -1; -2) có hệ số góc k có dạng ∆: y= k( x+ 1) -2 .
+ ∆ là tiếp tuyến của (C ) khi và chỉ khi hệ sau có nghiệm:
x 3 - x 2 + x + 1 = k ( x + 1 ) - 2 ( 1 ) 3 x 2 - 2 x + 1 = k ( 2 )
+Thay (2) vào (1) ta được
x3- x2+ x+ 1= ( 3x2- 2x+1) (x+1) -2
Hay ( x+ 1) 2(x-1) =0
Suy ra x= -1 ( trùng với M nên loại ) hoặc x= 1
Với x= 1 thì y= 2. Vậy N( 1;2)
Chọn C.
Gọi M( x0; y0) , x 0 ≠ - 1 là tọa độ tiếp điểm của d và (C).
Khi đó d có hệ số góc y ' ( x 0 ) = 1 x 0 + 1 2 và có phương trình là :
Vì d cách đều A: B nên d đi qua trung điểm I( -1; 1) của AB hoặc cùng phương với AB .
TH1: d đi qua trung điểm I( -1; 1) , thì ta luôn có:
,
phương trình này có nghiệm x0= 1
Với x0= 1 ta có phương trình tiếp tuyến d : 1 4 x + 5 4
TH2: d cùng phương với AB , tức là d và AB có cùng hệ số góc, khi đó
hay
1 x 0 + 1 2 = 1 ⇔ x 0 = - 2 h o ặ c x 0 = 0
Với x0 = -2 ta có phương trình tiếp tuyến d: y= x+ 5.
Với x0 =0 ta có phương trình tiếp tuyến d: y=x+ 1.
Vậy, có 3 tiếp tuyến thỏa mãn đề bài: y = 1 4 x + 5 4 , y= x+ 5, y=x+ 1
Chọn D.
Chọn D
Ta có y' = 3x2 + 6x ⇒ k = y'(1) = 9.
Phương trình tiếp tuyến tại M(1;4) là
d: y = y'(x0)(x - x0) + y0 = 9(x - 1) + 4 = 9x - 5.