K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2015

Không phải phân tích đa thức thành nhân tử đâu bạn, bạn đưa đa thức đó về dạng:

1) B = A2 + C (trong đó A là 1 biểu thức chứa biến, C là 1 hằng số) nếu tìm GTNN

2) B = -A2 + C hoặc C - A2 (trong đó A là 1 biểu thức chứa biến, C là 1 hằng số) nếu tìm GTLN

Khi đó GTNN (GTLN) của B là C.

Ví dụ:

a) A = 6x2 - x - 1

A = (√6.x)2 - 2.√6.x.\(\frac{1}{2\sqrt{6}}\)\(\frac{1}{24}\)\(\frac{25}{24}\)

A = (√6.x + \(\frac{1}{2\sqrt{6}}\))\(\frac{25}{24}\)

=> A ≥ - \(\frac{25}{24}\)với mọi x 

Vậy GTNN của A là -\(\frac{25}{24}\)đạt được khi √6.x + \(\frac{1}{2\sqrt{6}}\) = 0 <=> x = \(\frac{-1}{12}\)

 

 

29 tháng 10 2022

Bài 3:

a: =>6x(x^2-4)=0

=>x(x-2)(x+2)=0

hay \(x\in\left\{0;2;-2\right\}\)

b: \(\Leftrightarrow9\left(x^2-1\right)-9x^2+6x-1=2\)

=>9x^2-9-9x^2+6x-1=2

=>6x-10=2

=>6x=12

=>x=2

22 tháng 6 2019

Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html

a: ĐK của A là x<>-3; x<>2

ĐKXĐ của B là x<>3

DKXĐ của C là x<>0; x<>4/3

ĐKXĐ của D là x<>-2

ĐKXĐ của E là x<>2; x<>-2

ĐKXĐ của F là x<>2

b,c:

\(A=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{2}{x-2}\)

Để A=0 thì 2=0(loại)

\(B=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-3\right)}=\dfrac{x+3}{x-3}\)

Để B=0 thì x+3=0

=>x=-3

\(C=\dfrac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\dfrac{3x+4}{x}\)

Để C=0 thì 3x+4=0

=>x=-4/3

\(D=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}=\dfrac{x+2}{2}\)

Để D=0 thì x+2=0

=>x=-2(loại)

\(E=\dfrac{x\left(2-x\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{-x}{x+2}\)

Để E=0 thì x=0

\(F=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)

Để F=0 thì 3=0(loại)

12 tháng 9 2021

a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)

b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)

c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)

\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)

d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)

\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)

e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)

\(minE=-20\Leftrightarrow x=-3\)

f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)

12 tháng 9 2021

\(A=x^2+3x+4=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)

Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)

Mấy câu còn lại làm tương tự nhé em^^

1 tháng 10 2016

Phân tích đa thức thành nhân tử:

a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)

b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)

\(=\left(5-x+2y\right)\left(5+x-2y\right)\)

Rút gọn biểu thức;

\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)

\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)

Tìm a để đa thức.. Bạn chia cột dọ thì da

1 tháng 10 2016

\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)