Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M =\(\dfrac{1}{3}xy\left(-3xy^2\right)^2\)=\(\dfrac{1}{3}xy.9x^2y^4\)=3\(x^3y^5\).Do đó phần hệ số là 3 và phần biến là \(x^3y^5\)
a) Khi n = 10 có:
\(A=\frac{10-5}{10+1}=\frac{5}{11}\)
b) Khi n = 0
\(A=\frac{0-5}{0+1}=-\frac{5}{1}=-5\)
c) Để A thuộc Z thì n - 5 chia hết cho n + 1
=> n - 6 + 1 chia hết cho n + 1
=> n + 1 chia hết cho n + 1 => -6 chia hết n + 1
=> n + 1 thuộc Ư (6) = {1;2;3;6;-1;-2;-3;-6}
=> n thuộc {0;1;2;5;-2;-3;-4;-7}
d. Để A tối giản thì n = {0;5;-2}
b +a = ab ; ab =a/b
2a = 1 ; b = -1
[a = 0,b =0]
-ab+b+a=0
-(a-1)b-a=0
a-1=0 ; b-1=0
b=1 ; b=0
ab=a/b ma ab-a/b =0
(b^2-1)a=0 ;b^2-1=0
1/b=0
kết quả là : a=1/2
b=-1