K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2019

\(\hept{\begin{cases}3x+3y=3+a\\x+2y=a\end{cases}\left(1\right)}\)

\(\Rightarrow\hept{\begin{cases}3x+3y=3+a\\3x+6y=3a\end{cases}}\)

\(\Rightarrow3y=2a-3\)

\(\Rightarrow y=\frac{2a-3}{3}\)

Cũng có : 

Từ ( 1 ) \(\Rightarrow\)\(\hept{\begin{cases}6x+6y=6+2a\\3x+6y=3a\end{cases}}\)

\(\Rightarrow3x=6-a\)

\(\Rightarrow x=\frac{6-a}{3}\)

\(\Rightarrow\left(\frac{2a-3}{3}\right)^2+\left(\frac{6-a}{3}\right)^2=17\)

\(\Rightarrow\frac{4a^2-12a+9}{9}+\frac{36-12a+a^2}{9}=17\)

\(\Rightarrow5a^2+45=153\)

\(\Rightarrow5a^2=108\)

\(\Rightarrow a^2=\frac{108}{5}\)

\(\Rightarrow\orbr{\begin{cases}a=-\sqrt{\frac{108}{5}}\\a=\sqrt{\frac{108}{5}}\end{cases}}\)

2 tháng 7 2017

\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=7\\x_1x_2=12\end{cases}\Leftrightarrow}x_{1,2}=3;4\)

2 tháng 7 2017

Hoặc x=3 hoặc x=4

20 tháng 3 2021

a)\(\Delta\)=(2m+3)^2-4.(m^2-1)

        =12m+13

=>Phương trình có 2 nghiệm phân biệt<=>\(\Delta\ge0\)

Hay 12m+13>_0

<=>m>_-13/12

b)Vì phương trình có nghiệm x1=1 nên thay x=1 vào phương trình ta có

1^2-(2m+3)1+m^2-1=0

<=>m^2-2m-3=0

<=>m=-1 hoặc m=3

Áp dụng hệ thức Vi-ét ta có

x1.x2=m^2-1

=>x2=m^2-1

+)m=-1=>x2=0

+)m=3=>x2=8

c)Theo câu a ta có 

Phương trình có 2 nghiệm phân biệt<=>m>_-13/12

Áp dụng hệ thức Vi-ét ta có

x1+x2=2m+3 và x1.x2=m^2-1 (1)

Đặt A= x1^2+x2^2=(x1+x2)^2-2.x1.x2

Thay (1) vào A ta có

A=(2m+3)^2-2(m^2-1)

=4m^2+12m+11

=(2m+3)^2+2>_2 Hay GTNN của x1^2+x2^2 là 2

Dấu "=" xảy ra <=>2m+3=0<=>m=-3/2

d)Câu này dễ b tự lm nha

21 tháng 3 2016

Mình sẽ giải lần lượt cho

21 tháng 3 2016

xin lỗi mình chịu

1 tháng 3 2020

b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)

\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)

Vậy pt (1) có 2 nghiệm x1,x2 với mọi m

Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)

Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)

<=>\(4m^2-8m+4+2m+6=10\)

<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)

<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)

c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)

Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)

<=>\(2x_1x_2+x_1+x_2=-8\)