Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : A = 3 + 32 + 33 + ..... + 3100
=> 3A = 32 + 33 + 34 + ..... + 3101
=> 3A - A = 3101 - 3
=> 2A = 3101 - 3
=> A = \(\frac{3^{101}-3}{2}\)
3A=3+3^2+3^3+...+3^100
2A=3A-A=(3+3^2+3^3+....+3^1000-(1+3+3^2+....+3^99) = 3^100-1
=>2A+1 = 3^100 = (3^5)^20 = 243^20
Vậy 2A+1 = 243^20
k mk nha
a, \(\frac{6^5\cdot27^2}{7^3\cdot9^5}=\frac{2^5\cdot3^5\cdot\left(3^3\right)^2}{7^3\cdot\left(3^2\right)^5}=\frac{2^5\cdot3^5\cdot3^6}{7^3\cdot3^{10}}=\frac{2^5\cdot3^{11}}{7^3\cdot3^{10}}=\frac{2^5\cdot3}{7^3}\)
b, \(\frac{12^7\cdot9^3}{8^5\cdot27^3}=\frac{3^7\cdot2^{12}\cdot3^6}{2^{15}\cdot3^9}=\frac{2^{12}\cdot3^{13}}{2^{15}\cdot3^9}=\frac{3^4}{2^3}\)
c, \(\frac{20^6\cdot8^2}{16^3\cdot25^3}=\frac{2^{12}\cdot5^6\cdot2^6}{2^{12}\cdot5^6}=2^6\)
a,( 393+390) : (317. 373)
= (33+1). 390 : 390
= 33+1
=27+1
=28
b,(556+57) : (549+1)
=57. (549+1) : (549+1)
=57= 78125
c,(722+721+720) ; (25+24+32)
= 720. (72+71+1) : [24. (2+1)+32 ]
= 720. 57 : [ 24. 3 +32 ]
= 720. 57 : ( 24+3) . 3
= 720. 57 : 19 . 3
= 720. 57 : 57
= 720
a)152*32*53
=152*32*52*5
=152*(3*5)2*5
=152*152*5
=154*5
b)93*32*63*22
=(9*6)3*(3*2)2
=543*62
=(6*9)3*62
=63*93*62
=65*93
c)82*23
=82*8
=83
d)103*23*52
=(2*5)3*23*52
=23*53*23*52
=26*55
Bài 1:
\(S=1+3^2+3^4+...+3^{2020}\)
\(=1+\left(3^2+3^4\right)+\left(3^6+3^8\right)+...+\left(3^{2018}+3^{2020}\right)\)
\(=1+3^2\left(1+3^2\right)+3^6\left(1+3^2\right)+...+3^{2018}\left(1+3^2\right)\)
\(=1+10\left(3^2+3^6+...+3^{2018}\right)\)
Suy ra \(S\)có chữ số tận cùng là chữ số \(1\).
Bài 2:
\(A=2+2^2+2^3+...+2^{2016}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)
\(2^8:2^2+3^3:3^3\)
=64+1
=65
\(2^8:2^2+3^3:3^3\)
= \(2^{8-2}+3^{3-3}\)
= \(2^6+3^0\)
= 64 + 1
= 65