K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

\(2^8:2^2+3^3:3^3\)

=64+1

=65

11 tháng 10 2021

\(2^8:2^2+3^3:3^3\)

\(2^{8-2}+3^{3-3}\)

\(2^6+3^0\)

= 64 + 1

= 65

Đặt : A = 3 + 32 + 33 + ..... + 3100

=> 3A = 32 + 33 + 34 + ..... + 3101

=> 3A - A = 3101 - 3

=> 2A = 3101 - 3

=> A = \(\frac{3^{101}-3}{2}\)

29 tháng 3 2018

cảm ơn bạn nha at the speed of light thank you

14 tháng 11 2017

3A=3+3^2+3^3+...+3^100

2A=3A-A=(3+3^2+3^3+....+3^1000-(1+3+3^2+....+3^99) = 3^100-1

=>2A+1 = 3^100 = (3^5)^20 = 243^20

Vậy 2A+1 = 243^20

k mk nha

9 tháng 4 2020

a, \(\frac{6^5\cdot27^2}{7^3\cdot9^5}=\frac{2^5\cdot3^5\cdot\left(3^3\right)^2}{7^3\cdot\left(3^2\right)^5}=\frac{2^5\cdot3^5\cdot3^6}{7^3\cdot3^{10}}=\frac{2^5\cdot3^{11}}{7^3\cdot3^{10}}=\frac{2^5\cdot3}{7^3}\)

b, \(\frac{12^7\cdot9^3}{8^5\cdot27^3}=\frac{3^7\cdot2^{12}\cdot3^6}{2^{15}\cdot3^9}=\frac{2^{12}\cdot3^{13}}{2^{15}\cdot3^9}=\frac{3^4}{2^3}\)

c, \(\frac{20^6\cdot8^2}{16^3\cdot25^3}=\frac{2^{12}\cdot5^6\cdot2^6}{2^{12}\cdot5^6}=2^6\)

18 tháng 8 2020

a,( 393+390) : (317. 373)

= (33+1). 390 : 390

= 33+1

=27+1

=28

b,(556+57) : (549+1)

=57. (549+1) : (549+1)

=57= 78125

c,(722+721+720) ; (25+24+32)

= 720. (72+71+1) : [24. (2+1)+32 ]

= 720. 57 : [ 24. 3 +32 ]

= 720. 57 :  ( 24+3) . 3

= 720. 57 :  19 . 3

= 720. 57 : 57

= 720

11 tháng 8 2016

a)152*32*53

=152*32*52*5

=152*(3*5)2*5

=152*152*5

=154*5

b)93*32*63*22

=(9*6)3*(3*2)2

=543*62

=(6*9)3*62

=63*93*62

=65*93

c)82*23

=82*8

=83

d)103*23*52

=(2*5)3*23*52

=23*53*23*52

=26*55

DD
30 tháng 11 2021

Bài 1: 

\(S=1+3^2+3^4+...+3^{2020}\)

\(=1+\left(3^2+3^4\right)+\left(3^6+3^8\right)+...+\left(3^{2018}+3^{2020}\right)\)

\(=1+3^2\left(1+3^2\right)+3^6\left(1+3^2\right)+...+3^{2018}\left(1+3^2\right)\)

\(=1+10\left(3^2+3^6+...+3^{2018}\right)\)

Suy ra \(S\)có chữ số tận cùng là chữ số \(1\).

DD
30 tháng 11 2021

Bài 2: 

\(A=2+2^2+2^3+...+2^{2016}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)