Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng
P = (x +1 -1)/(x +1) + (y +1 -1)/(y +1) + (z +1 -1)/ (z+1)
= 3 - [ 1/(x+1) + 1/(y +1) + 1/(z +1) ]
Áp dụng BĐT cô si, ta có:
[(x +1) + (y +1) + (z +1)]. [1/(x+1) + 1/(y +1) + 1/(z +1) ] ≥9
=> 1/(x+1) + 1/(y +1) + 1/(z +1) ≥ 9/4 ( do x + y + z =1)
=> P ≤ 3/4
Dấu " =" xảy ra <=> x = y = z = 1/3
Vậy maxP = 3/4
Lưu ý: bạn cần cm BĐT phụ:
Cho x, y, z >0, ta có:
(x +y +z) (1/x +1/y +1/z) ≥ 9
Chứng minh nhanh như sau:
Theo bđt cô si đã biết, ta có: x + y + z ≥ 3∛(xyz) và 1/x +1/y + 1/z ≥ 3∛[1/(xyx)]
⇒(x + y + z)(1/x + 1/y +1/z) ≥ 3∛(xyz) . 3∛[1/(xyx)] =9
Dấu “=” của bđt xảy ra ⇔ x = y = z
\(P=\left(1-\frac{1}{x+1}\right)+...\)
= \(3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Schwarz ta có \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+y+z+3}\)\(=\frac{9}{4}\)
do đó P<= 3-9/4=3/4
dấu = xảy ra <=> x=y=z=1/3
a) Ta có: A = x2 + y2 - xy - 2x - 2y + 9
2A = 2x2 + 2y2 - 2xy - 4x - 4y + 18
2A = (x2 + y2 - 2xy) + (x2 - 4x + 4) + (x2 - 4y + 4) + 10
2A = (x - y)2 + (x - 2)2 + (y - 2)2 + 10 \(\ge\)10 \(\forall\)x
=>A \(\ge\)5 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\x=2\\y=2\end{cases}}\) <=> x = y = 2
Vậy MinA = 5 <=> x = y = 2
b) Ta có: 3x2 + 3y2 + 4xy + 2x - 2y + 2 = 0
=> (2x2 + 2y2 + 4xy) + (x2 + 2x + 1) + (y2 - 2y + 1) = 0
=> 2(x + y)2 + (x + 1)2 + (y - 1)2 = 0
<=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-y\\x=-1\\y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
PT vô số nghiệm bn nha
đề thiếu à bạn