Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|3-2x\right|+\left|4y+5\right|=0\)
Do \(\left|3-2x\right|\ge0;\left|4y+5\right|\ge0\Rightarrow\left|3-2x\right|+\left|4y+5\right|\ge0\)
Dấu "=" xảy ra khi \(x=\frac{2}{3};y=-\frac{5}{4}\)
Mấy bài khác tương tự
|x - y| + |y + 9/25| \(\le\)0
Ta có: |x - y| \(\ge\)0 \(\forall\)x,y
|y + 9/25| \(\ge\) 0 \(\forall\)y
=> |x - y| + |y + 9/25| \(\ge\)0 \(\forall\)x, y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}}\) => \(x=y=-\frac{9}{25}\)
Vậy ...
(x + y)2012 + 2013|y - 1| = 0
Ta có: (x + y)2012 \(\ge\)0 \(\forall\)x, y
2013|y - 1| \(\ge\)0 \(\forall\)y
=> (x + y)2012 + 2013|y - 1| \(\ge\)0 \(\forall\)x,y
Dấu "=" cảy ra khi : \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\) => \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\) => \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy ...
a, 2I3xI+Iy+3I=10 <=>6IxI+Iy+3I=10
vì 6IxI<=10 =>IxI<=10/6 <=>IxI<=1 => x=1;-1;0
x=1 hoặc x=-1=>Iy+3I=4 =>y=1 hoặc -7
x=0 => Iy+3I=10=>y=7 hoặc -13
b, Tương tự 12IxI<=21=>IxI<=21/12 =>IxI=1
x=1 hoặc -1 =>y=6 hoặc -12
x=0 => y= 18 hoặc -24
c, Tương tự I2x+1I<=3 <=> -3<= 2x+1<=3 <=>-4<= 2x<= 2 <=>-2<= x <=1
x=-2 hoặc 1=>Iy-4I=0 => y=4
x=-1 hoặc 0 =>Iy-4I=2 =>y=6 hoặc 2
d,2y^2+I2x+1I=5
tương tự 2y^2<=5 =>y^2<=5/2 <=>y^2<=2 =>y^2=1 hoặc 0
y^2=0 =>y=o thì I2x+1I=5 => x=2 hoặc -3
y^2=1 => y= 1 hoặc -1 thì I2x+1I=3 =>x =1 hoặc -2
Ta có |x-1/2|+(2x-y)200\(\le\)0
Nhận thấy |x-1/2| \(\ge\)0
(2x-y)200\(\ge\)0
=> |x-1/2|+(2x-y)200=0
=> |x-1/2|=(2x-y)200=0
=> x-1/2=2x-y=0
=> x=1/2; y= 1
\(\left(2x-1\right)^2+\left(y-3\right)^8+\left(z-5\right)^{20}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-3=0\\z-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3\\z=5\end{matrix}\right.\)
(2x - 5)2000 + (3y + 4)2002
ta có: (2x - 5)2000 \(\ge\) 0 ; (3y + 4)2002 \(\ge\) 0
=> (2x - 5)2000 + (3y + 4)2002 \(\ge\) 0
Dấu "=" xảy ra khi 2x - 5 = 0 và 3y + 4 = 0
=> 2x = 5 và 3y = -4
=> x = 2,5 và y = \(\frac{-4}{3}\)
\(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)\in\left\{\left(10;\dfrac{1}{2}\right);\left(10;-\dfrac{1}{2}\right)\right\}\)