K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

=vô hạn

cạn lời luôn đó .

chịu luôn

22 tháng 2 2022

=???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

17 tháng 3 2022

= 3/2 . 4/3...11/10

=1/12

17 tháng 3 2022

\(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)...\left(1+\dfrac{1}{10}\right)\\=\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{11}{10}\\ =\dfrac{11}{2}\)

17 tháng 3 2022

bạn ơi nhưng đây là bài tính nhanh 

bạn có cách nào nhanh gọn nhất không ạ?

<333

NV
7 tháng 1 2021

Vì nguyên tắc cân bằng điểm rơi của BĐT:

\(a+b+c\ge3\sqrt[3]{abc}\) với dấu "=" xảy ra khi \(a=b=c\)

Dự đoán dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Do đó, bạn cần 1 hằng số k sao cho:

\(\dfrac{2}{xy}+kx+ky\ge3\sqrt[3]{...}\)

Với \(\dfrac{2}{xy}=kx=ky\)  khi \(x=y=\dfrac{1}{2}\)

Thay vào: \(\dfrac{2}{\dfrac{1}{2}.\dfrac{1}{2}}=k.\dfrac{1}{2}=k.\dfrac{1}{2}\Rightarrow k=16\)

Đó là lý do xuất hiện số 16

P/s: bài làm này rắc rối một cách rất không cần thiết

Sau khi đến đoạn: \(P=1+\dfrac{2}{xy}\)

Ta làm tiếp như sau:

Từ giả thiết: \(1=x+y\ge2\sqrt{xy}\Rightarrow\sqrt{xy}\le\dfrac{1}{2}\Rightarrow xy\le\dfrac{1}{4}\)

\(\Rightarrow\dfrac{1}{xy}\ge4\)

\(\Rightarrow P=1+2.\dfrac{1}{xy}\ge1+2.4=9\)

Như vậy đơn giản hơn nhiều :)

26 tháng 7 2019

Áp dụng BĐT AM-GM ta có:

\(\left(a+1\right)^2+b^2+1=a^2+2a+1+b^2+1=\left(a^2+b^2\right)+2a+2\ge2\left(ab+a+1\right)\)

\(\Rightarrow\frac{1}{\left(a+1\right)^2+b^2+1}\le\frac{1}{2\left(ab+a+1\right)}\)(1)

\(\left(b+1\right)^2+c^2+1=b^2+2b+1+c^2+1=\left(b^2+c^2\right)+2b+2\ge2\left(bc+b+1\right)\)

\(\Rightarrow\frac{1}{\left(b+1\right)^2+c^2+1}\le\frac{1}{2\left(bc+b+1\right)}\)(2)

\(\left(c+1\right)^2+a^2+1=c^2+2c+1+a^2+1=\left(c^2+a^2\right)+2c+2\ge2\left(ca+c+1\right)\)

\(\Rightarrow\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2\left(ca+c+1\right)}\)(3)

Cộng vế theo vế của (1) ; (2) ; (3) ta được:

\(\frac{1}{\left(a+1\right)^2+b^2+1}+\frac{1}{\left(b+1\right)^2+c^2+1}+\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)=\frac{1}{2}\)Dấu "=" xảy ra \(\Leftrightarrow a=b=b=1\)

14 tháng 3 2020

ko hiểu

a: Ta có: \(P=\left(\dfrac{1}{a+\sqrt{a}}+\dfrac{1}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)

\(=\dfrac{a+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)

\(=\dfrac{\left(a+1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\)

a: \(=\left(1+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{-\left(\sqrt{5}-1\right)}\right)\left(\sqrt{5}+1\right)\)

=(1-căn 5)(1+căn 5)

=1-5=-4

b: \(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\)

phụ huynh hỏi mà mình có hỏi đâu

baiiiiiii