\(\ge\)-3.Tìm GTLN của A=-3m2+2m+32

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

Bài này cũng tương tự với câu trước đó thôi nhé Trương Tuấn Dũng ^^

Ta có : \(A=-3m^2+2m+32=-3\left(m-\frac{1}{3}\right)^2+\frac{97}{3}\)

\(m\ge-3\Leftrightarrow-3\left(m-\frac{1}{3}\right)^2\le-\frac{100}{3}\Rightarrow A\le-1\)

Vậy Max A = -1 <=> m = -3

16 tháng 7 2016

À , kết quả của mình sai rồi nhé ^^

13 tháng 7 2016

Ta có : \(A=-3m^2+2m+32=-3\left(m-\frac{1}{3}\right)^2+\frac{97}{3}\)

Với \(m\ge-3\Rightarrow-3\left(m-\frac{1}{3}\right)^2\le-\frac{100}{3}\Rightarrow A\le-1\)

Dấu "=" xảy ra khi m = -3

Vậy Max A = -1 <=> m = -3

13 tháng 7 2016

m=0 thì A=32

12 tháng 7 2016

Ta có : \(P=2m^2+30m+72=2\left(m+\frac{15}{2}\right)^2-\frac{81}{2}\)

Vì \(m\ge3\Leftrightarrow2\left(m+\frac{15}{2}\right)^2\ge\frac{441}{2}\Leftrightarrow P\ge180\)

Vậy Min \(P=180\Leftrightarrow m=3\)

16 tháng 5 2018
a>_5 b>_6 c>_7 =>2ab>_60 2ac>_70 2bc>84=> 2ab+2bc+2ac>_214 (1) lại có: a^2+b^2+c^2=125 (2) cong ve voi ve(1)va (2): (a+b+c)^2>_339 =>a+b+c>_căn339 =>min=căn339
16 tháng 5 2018

Để M=a+b+c nhỏ nhất thì a,b,c phải nhỏ nhất

mà a\(\ge\)5 , b\(\ge\)6 , c\(\ge\)7

và a\(^2\)+b\(^2\)+c\(^2\)=125

\(\Rightarrow\)a,b,c lần lượt là 5 ,6,8 (tmđk)

GTNN của M là 19

31 tháng 7 2019

\(a,A=4x-x^2+3\)

       \(=-\left(x^2-4x+4\right)+7\)

       \(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu"=" xảy ra<=> \(-\left(x-2\right)^2=0\Leftrightarrow x=2\) 

Vậy......

\(b,B=4-x^2+2x\)

      \(=-\left(x^2-2x+1\right)+5\)

      \(=-\left(x-1\right)^2+5\le5\forall x\)

Dấu"=" xảy ra<=> \(-\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy......

31 tháng 7 2019

B2:

a) ta có: \(a^2+b^2-2ab\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\forall a;b\) (luôn đúng)

\(\Rightarrowđpcm\)

b) Ta có: \(a^2+b^2\ge-2ab\)

     \(\Rightarrow\left(a+b\right)^2\ge0\forall a;b\) (luôn đúng)

   \(\Rightarrowđpcm\)