Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đề sai (ko nói đến chuyện nhầm lẫn ở hạng tử thứ 2 lẽ ra là bc), bạn cho \(a=b=c=d=0,1\) là thấy vế trái lớn hơn vế phải
b/ \(\frac{1}{2}xy.2xy\left(x^2+y^2\right)\le\frac{1}{2}.\frac{\left(x+y\right)^2}{4}.\frac{\left(2xy+x^2+y^2\right)^2}{4}=\frac{\left(x+y\right)^6}{32}=\frac{64}{32}=2\)
Dấu "=" xảy ra khi \(x=y=1\)
c/ Bình phương 2 vế:
\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge a^2+b^2+c^2\)
Ta có: \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2b^2\) ; \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2c^2\); \(\frac{a^2b^2}{c^2}+\frac{a^2c^2}{b^2}\ge2a^2\)
Cộng vế với vế:
\(2\left(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\right)\ge2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow...\)
Dấu "=" xảy ra khi \(a=b=c\)
Đính chính lại nhé
\(\frac{BE}{AE}=\frac{1}{2}\) chứ không phải \(\frac{DE}{AE}\) nhé
\(gt\Rightarrow\frac{ab+bc+ca}{abc}=0\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(\Rightarrow x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-czx\right)+3xyz\)
+ \(A=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\left[\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{bc}-\frac{1}{ca}\right)+\frac{3}{abc}\right]\)
\(=abc\cdot\frac{3}{abc}=3\)
Ta có:
ab + ac + bc = 0
\(\Rightarrow\) \(\frac{ab+ac+bc}{abc}=0\)
\(\Rightarrow\) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Đặt \(\frac{1}{a}=x;\) \(\frac{1}{b}=y;\) \(\frac{1}{c}=z\)
Mà x + y + z = 0
=> x3 + y3 + z3 = 3xyz (Tự chứng minh nhé bạn, nếu không chứng minh được thì bình luận nhé!)
\(\Rightarrow\) \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Ta có:
\(A=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)
\(A=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}\)
\(A=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(A=abc.\frac{3}{abc}\)
\(A=3\)