\(\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}\)

Tìm các gt nguyên của A để M thuộc...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

\(M=\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}=\frac{\left(a^2-4\right)\left(a^2+4\right)}{a^4-4a^3+4a^2+4a^2-16a+16}=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{a^2\left(a^2-4a+4\right)+4\left(a^2-4a+4\right)}\)

\(=\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a-2\right)^2}=\frac{a+2}{a-2}=\frac{a-2+4}{a-2}=1+\frac{4}{a-2}\)

Để \(M\in Z\Leftrightarrow a-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Ta có bảng:

a - 21-12-24-4
a31406-2

Vậy...

21 tháng 7 2017

M = \(\frac{a^4-16}{a^4-4a^3+8a^2-16a+16}\)

=> M = \(\frac{\left(a^2+4\right)\left(a^2-4\right)}{\left(a^4-4a^3+4a^2\right)+\left(4a^2-16a+16\right)}\)

M = \(\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{a^2\left(a^2-4a+4\right)+4\left(a^2-4a+4\right)}\)

M = \(\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a^2-4a+4\right)}\)

M = \(\frac{\left(a-2\right)\left(a+2\right)\left(a^2+4\right)}{\left(a^2+4\right)\left(a-2\right)^2}\)

M = \(\frac{a+2}{a-2}\)

23 tháng 7 2019

â) \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\) 

\(=\left(\frac{x\left(x-4\right)+4\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}\right)=\left(\frac{x^2+16}{x^2-16}\right):\frac{x^2+16}{x+2}\)  

\(=\frac{x+2}{x^2-16}\left(đpcm\right)\)

23 tháng 7 2019

a) \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\)

\(A=\frac{x\left(x-4\right)+4\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}.\frac{x+2}{x^2+16}\)

\(A=\frac{x^2-4x+4x+16}{x^2-16}.\frac{x+2}{x^2+16}\)

\(A=\frac{x^2+16}{x^2-16}.\frac{x+2}{x^2+16}\)

\(A=\frac{x+2}{x^2-16}\left(đpcm\right)\)

24 tháng 6 2019

Ta có : Để M=\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right)\left(\frac{x^2+8x+16}{32}\right)=0\)

<=> M=\(\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)=0\)

<=>M=\(\left(\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)

<=>M=\(\left(\frac{32}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)

<=>M=\(\frac{x+4}{x-4}\)

b) Thay x=\(\frac{-3}{8}\) vào M:

M=\(\frac{x+4}{x-4}=\frac{\frac{-3}{8}+4}{\frac{-3}{8}-4}=\frac{-29}{35}\)

c)Hình như sai!

d)

28 tháng 11 2018

a,\(M=\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\frac{x^2+8x+16}{32}\)

\(M=\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right).\frac{\left(x+4\right)^2}{32}\)

\(M=\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}.\frac{\left(x+4\right)^2}{32}\)

\(M=\frac{32\left(x+4\right)^2}{32\left(x+4\right)\left(x-4\right)}=\frac{x+4}{x-4}\)

b,

Để M = \(\frac{1}{3}\)

\(\Rightarrow x-4=3x+12\)

\(\Rightarrow2x=16\Leftrightarrow x=8\)

\(c,\)\(\frac{x+4}{x-4}=\frac{x-4+8}{x-4}\)

\(\Rightarrow x-4\inƯ\left(8\right)=\left(1;-1;2;-2;4;-4;8;-8\right)\)

28 tháng 11 2018

\(\Rightarrow x-4\in\left(5;3;6;2;8;0;12;-4\right)\)

Vậy để M thuộc Z thì x phải thỏa mãn các điều kiện trên .

18 tháng 1 2017

a/ \(A=\frac{2x^3-6x^2+x-8}{x-3}=2x^2+1-\frac{5}{x-3}\)

Từ đây ta thấy A nguyên khi x - 3 là ước nguyên của 5 hay

\(\left(x-3\right)=\left(-5,-1,1,5\right)\)

\(\Rightarrow x=\left(-2,2,4,8\right)\)

b/ \(B=\frac{x^4-16}{x^4-4x^3+8x^2-16x+16}=\frac{\left(x^2+4\right)\left(x-2\right)\left(x+2\right)}{\left(x^2+4\right)\left(x-2\right)^2}\)

\(=\frac{x+2}{x-2}=1+\frac{4}{x-2}\)

Để B nguyên thì x - 2 phải là ước nguyên của 4 hay

\(\left(x-2\right)=\left(-4,-2,-1,1,2,4\right)\)

\(\Rightarrow x=\left(-2,0,1,3,4,6\right)\)