Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{6n-1}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để M tối giản thì \(\frac{5}{3n+2}\) tối giản hay 5 và 3n+2 là hai số nguyên tố cùng nhau và 5 \(⋮\)5 nên 3n+2\(⋮̸\) cho 5 \(\Rightarrow\)n \(\ne\)(5k-2):3
chỉ bt lm b2 thoy :)
a, Gọi d là ƯC(3n-2; 4n-3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
\(\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Rightarrow12n-8-12n+9⋮d\)
\(\Rightarrow\left(12n-12n\right)+\left(9-8\right)⋮d\)
\(\Rightarrow0+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow\frac{3n-2}{4n-3}\) là phân số tối giản
b, Gọi d là ƯC(4n+1; 6n+1)
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}}}\)
đến đây làm tiếp như phần a
Phân tích \(\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)+91}{3n+4}\)
Để \(\frac{6n+99}{3n+4}\) là phân số tối giản thì 91 phải chia hết cho 3n+4
Vì 91=7.13 nên 3n+4\(\in\){1;7;13;91} nên
trường hợp 1:3n+4=1=>n=-1(loại)
trường hợp 2:3n+4=7=>n=1
trường hợp 3:3n+4=13=>n=3
trường hợp 4:3n+4=91=>n=29
Vậy n\(\in\) {1;3;29}
Bài 2:
a)Gọi UCLN(14n+3;21n+4) là d
Ta có:
[3(14n+3)]-[2(21n+4)] chia hết d
=>[42n+9]-[42n+8] chia hết d
=>1 chia hết d
=>d=1. Suy ra 14n+3 và 21n+4 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
b)Gọi UCLN(12n+1;30n+2) là d
Ta có:
[5(12n+1)]-[2(30n+2)] chia hết d
=>[60n+5]-[60n+4] chia hết d
=>1 chia hết d. Suy ra 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
c)Gọi UCLN(3n-2;4n-3) là d
Ta có:
[4(3n-2)]-[3(4n-3)] chia hết d
=>[12n-8]-[12n-9] chia hết d
=>1 chia hết d. Suy ra 3n-2 và 4n-3 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
d)Gọi UCLN(4n+1;6n+1) là d
Ta có:
[3(4n+1)]-[2(6n+1)] chia hết d
=>[12n+3]-[12n+2] chia hết d
=>1 chia hết d. Suy ra 4n+1 và 6n+1 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
\(A=\frac{6n+99}{3n+4}\)
\(A=\frac{6n+8+91}{3n+4}\)
\(=\frac{2\left(3n+4\right)+91}{3n+4}\)
\(=2+\frac{91}{3n+4}=\frac{7.13}{3n+4}\)
vậy \(3n+4\ne7\)
\(3n+4\ne13\)
\(3n+4\ne91\)
\(\Rightarrow\)\(3n+4\ne1;3;29\)
mk nghĩ vậy bạn ạ
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)
Ta có bảng :
3n + 4 | 1 | 7 | 13 | 91 |
n | -1 | 1 | 3 | 29 |
nhận xét | loại | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy ......
b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)
=> 3n + 4 ko chia hết cho ước nguyên tố của 91
=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)
=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)
a)\(A\inℤ\)
\(\Leftrightarrow6n-1⋮3n+2\)
\(\Leftrightarrow3n+2⋮3n+2\)
\(\Leftrightarrow6n+4⋮3n+2\)
\(\Leftrightarrow6n+4-\left(6n-1\right)⋮3n+2\)
\(\Leftrightarrow6n+4-6n+1⋮3n+2\)
\(\Leftrightarrow5⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng
3n+2 | -5 | -1 | 1 | 5 |
---|---|---|---|---|
n | \(-\frac{7}{3}\) | -1 | \(-\frac{1}{3}\) | 1 |
nhận xét | loại | chọn | loại | chọn |
b)Gọi d là ƯCLN 6n-1 và 3n+2
<=>6n-1\(⋮\)d 3n+2\(⋮\)d
<=>________ 6n+4\(⋮\)d
<=>6n+4-6n+1\(⋮\)d
<=>5\(⋮\)d
Lập bảng(như câu a)
=>\(n\in\left\{\pm1\right\}\)để A là ps tối giản
c)(chịu)
\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=1-\frac{5}{3n+2}\)\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=1-\frac{5}{3n+2}\)
A tối giản
<=> 3n + 2 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}
Ta có bảng sau :
3n + 2 | 1 | -1 | 5 | -5 |
n | -1/3 | -1 | 1 | -7/3 |
Vì n thuộc Z
=> n = {-1 ; 1}
\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=1-\frac{5}{3n+2}\)
A tối giản
<=> 3n + 2 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}
Ta có bảng sau :
3n + 2 | 1 | -1 | 5 | -5 |
n | -1/3 | -1 | 1 | -7/3 |
Vì n thuộc Z
=> n = {-1 ; 1}
a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]
b) Gọi d là ước chung lớn nhất của 3n và 3n+1
=> 3n \(⋮\)d
Và: 3n+1 \(⋮\)d
=> (3n+1)-3n \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư(1)
=> d \(\in\){ 1}
Vậy \(\frac{3n}{3n+1}\)là phân số tối giản
Duyệt đi, chúc bạn học giỏi!