\(\frac{4n+3}{n-1}\left(n\in Z,n\ne1\right)\)tìm n để M có giá trị là một số nguyên...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)

a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3 

<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=>\(2n\in\left\{-8;-4;-2;2\right\}\)

<=>\(n\in\left\{-4;-2;-1;1\right\}\)

b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\)  nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên

<=> 2n+3=-1 <=> n=-2

\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2

phần giá trị nhỏ nhất bạn làm nốt

20 tháng 3 2017

\(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=2-\frac{5}{2n+3}\) A nguyên nên 2n+3\(\in\)U(5)={5,-5,1,-1} nên n\(\in\){2, -4, -1, -2}

A=\(2-\frac{5}{2n+3}\) nên có giá trị lớn nhất khi 2n+3=-1 <=>A=7, nhỏ nhất khi 2n+3=1 <=>A=-3

18 tháng 4 2021

a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)

Ta có : \(2n+5⋮d\)(1) 

\(n+3⋮d\Rightarrow2n+6⋮d\)(2) 

Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)

b, Để  \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi 

\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)

\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 31-1
n-2-4
7 tháng 2 2020

Để Dlaf số nguyên

-) 2n+7 chia hết n+3

n+3 chia hết n+3 vậy 2(n+3)chia hết n+3

vậy 2n +6 chia hết n+3

suy ra (2n+7)-(2n+6)chia hết n+3

suy ra 1 chia hết n+3 

vậy n+3 = 1 hoặc -1

suy ra n= -2 hoặc -4 k đúbg mk nha

7 tháng 2 2020

Ta có : \(\frac{2n+7}{n+3}=\frac{2n+6+1}{n+3}=\frac{2\left(n+3\right)+1}{n+3}=2+\frac{1}{n+3}\)

Để \(C\inℤ\Rightarrow\frac{1}{n+3}\inℤ\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)\)

mà \(n\inℤ\Rightarrow n+3\inℤ\)

Khi đó \(n+3\in\left\{1;-1\right\}\Rightarrow n\in\left\{-2;-4\right\}\)

8 tháng 8 2016

Bài 1:

\(\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=3-\frac{5}{3n+2}\in Z\)

\(\Rightarrow5⋮3n+2\)

\(\Rightarrow3n+2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

\(\Rightarrow3n\in\left\{-1;-3;3;-7\right\}\)

Vì \(n\in Z\) suy ra \(n\in\left\{-1;1\right\}\)

Bài 3:

\(\frac{n^2+4n-2}{n+3}=\frac{n\left(n+3\right)+n-2}{n+3}=\frac{n\left(n+3\right)}{n+3}+\frac{n-2}{n+3}=n+\frac{n-2}{n+3}\in Z\)

\(\Rightarrow n-2⋮n+3\)

\(\Rightarrow\frac{n-2}{n+3}=\frac{n+3-5}{n+3}=\frac{n+3}{n+3}-\frac{5}{n+3}=1-\frac{5}{n+3}\in Z\)

\(\Rightarrow5⋮n+3\)

\(\Rightarrow n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

\(\Rightarrow n\in\left\{-2;-4;2;-8\right\}\)

 

 

 

8 tháng 8 2016

bạn ra bình chọn cũng như không