Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý: Mệnh đề phủ định của mệnh đề x " ∀ x ∈ X , P ( x ) " .là " ∃ x ∈ X , P ( x ) ¯ " .
Đáp án B
Đáp án D
Phủ định của mệnh đề P là P ( x ) :" ∃ x ∈ R , x 2 − x + 7 ≥ 0 "
Lời giải:
a. Mệnh đề sai, vì $x^2\geq 0>-1$ với mọi $x\in\mathbb{R}$ theo tính chất bình phương 1 sosos.
Mệnh đề phủ định: $\forall x\in\mathbb{R}, x^2\neq -1$
b. Mệnh đề đúng, vì $x^2+x+2=(x+0,5)^2+1,75>0$ với mọi $x\in\mathbb{R}$ nên $x^2+x+2\neq 0$ với mọi $x\in\mathbb{R}$
Mệnh đề phủ định: $\exists x\in\mathbb{R}| x^2+x+2=0$
Đáp án: D
Phủ định của ∀x ∈ R là ∃x ∈ R . Phủ định của x2 – x – 6 < 0 là x2 – x – 6 ≥ 0.
D: “∃ x ∈ R: 3x = x2 + 1”
D− : “∀ x ∈ R ; 3x ≠ x2 + 1”
D− sai vì với
D− thỏa mãn:
E x ∈ R=>x<2=>x2<4