Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\left(1\right)\)
b, Ta có: \(\frac{a}{a+b}< \frac{a+b}{a+b+c};\frac{b}{b+c}< \frac{b+c}{a+b+c};\frac{c}{c+a}< \frac{c+a}{a+b+c}\)
\(\Rightarrow M< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)
Từ (1) và (2) => 1<M<2 hay M không phải là số nguyên
Bạn tham khảo nhé
\(b)\) Ta có :
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\)\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\)\(M>1\)\(\left(1\right)\)
Lại có :
\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)
\(\Rightarrow\)\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\)\(M< 2\)\(\left(2\right)\)
Từ (1) và (2) suy ra : \(1< M< 2\)
Vậy M không phải là số nguyên
Ta có:
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)\(\Rightarrow\)\(M>1\left(1\right)\)
M=\(\dfrac{a+b-b}{a+b}+\dfrac{b+c-c}{b+c}+\dfrac{c+a-a}{c+a}\)
= \(3-\left(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}\right)< 2\) \(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}>1\)
(Vì \(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}>1\)
\(\Rightarrow1< M< 2\)
Vậy M không có giá trị nguyên(đpcm)
a) Ta có : 7y=4z
=> \(\dfrac{y}{z}=\dfrac{4}{7}\)
Mà \(\dfrac{x+y}{t+z}=\dfrac{4}{7}\) nên \(\dfrac{x+y}{t+z}=\dfrac{y}{z}=\dfrac{4}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{x+y}{t+z}=\dfrac{y}{z}=\dfrac{4}{7}=\dfrac{x+y-y}{t+z-z}=\dfrac{x}{t}\)
Vậy \(\dfrac{x}{t}=\dfrac{4}{7}\)
1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)
a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc
b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)
Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)
2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )
Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)
\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )
Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)
\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )
Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
cm: \(1< M< 2\) sẽ thỏa mãn cả a và b
Ta có:
\(M>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\)
vì \(a;b;c>0\Leftrightarrow\dfrac{a}{a+b};\dfrac{b}{b+c};\dfrac{c}{c+a}< 1\)
\(\Rightarrow M< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}=2\)
hay: \(1< M< 2\)
còn câu b đâu bn