Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
19.
Phương trình mặt phẳng theo đoạn chắn:
\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)
\(\Leftrightarrow4x-3y-6z-12=0\)
20.
Phương trình mặt phẳng (ABC) theo đoạn chắn:
\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)
\(\Leftrightarrow6x+3y+2z-6=0\)
Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)
15.
\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)
16.
\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)
Phương trình (P):
\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)
17.
\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)
\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)
Phương trình mặt phẳng (R):
\(2x+3y+z=0\)
18.
\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)
\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)
Phương trình:
\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)
\(\Leftrightarrow9x+6y+4z-30=0\)
Phương trình \(d_1\) : \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) dạng tham số: \(\left\{{}\begin{matrix}x=1+t\\t=2-t\\z=3-t\end{matrix}\right.\)
Gọi A là giao điểm d1 và (P), tọa độ A thỏa mãn:
\(3-t-1=0\Rightarrow t=2\Rightarrow A\left(3;0;1\right)\)
\(\overrightarrow{n_P}=\left(0;0;1\right)\) ; \(\overrightarrow{n_Q}=\left(1;1;1\right)\)
\(\overrightarrow{u_{\Delta}}=\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(-1;1;0\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_P}\right]=\left(1;1;0\right)\)
Phương trình d: \(\left\{{}\begin{matrix}x=3+t\\y=t\\z=1\end{matrix}\right.\)
Chọn B
Gọi A là một điểm thuộc d => tọa độ của A thỏa mãn HPT
3.
\(d\left(I;\left(P\right)\right)=\frac{\left|-1-4-2-2\right|}{\sqrt{1^2+2^2+2^2}}=3\)
Áp dụng định lý Pitago:
\(R=\sqrt{5^2+3^2}=\sqrt{34}\)
Pt mặt cầu:
\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=34\)
\(\Leftrightarrow x^2+y^2+z^2+2x-4y+2z-28=0\)
4.
\(\left(\alpha\right)\) nhận \(\left(2;-3;-4\right)\) là 1 vtpt và tất cả các vecto có dạng \(\left(2k;-3k;-4k\right)\) cũng là các vecto pháp tuyến với \(k\ne0\) (bạn tự tìm đáp án phù hợp)
5.
\(\overrightarrow{AB}=\left(3;-6;0\right)\) ; \(\overrightarrow{AC}=\left(5;3;3\right)\)
\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(-18;-9;39\right)=-3\left(6;3;-13\right)\)
Mặt phẳng (ABC) nhận \(\left(6;3;-13\right)\) là 1 vtpt
Phương trình:
\(6\left(x+1\right)+3\left(y-2\right)-13\left(z-3\right)=0\)
\(\Leftrightarrow6x+3y-13z+39=0\)
1.
\(\overrightarrow{IA}=\left(4;2;6\right)\Rightarrow R^2=IA^2=4^2+2^2+6^2=56\)
Pt mặt cầu:
\(\left(x-1\right)^2+\left(y+3\right)^2+\left(z+2\right)^2=56\)
Dạng khai triển:
\(x^2+y^2+z^2-2x+6y+4z-42=0\)
2.
\(\overrightarrow{BA}=\left(10;2;-12\right)\Rightarrow R=\frac{AB}{2}=\frac{1}{2}\sqrt{10^2+2^2+12^2}=\sqrt{62}\)
Gọi I là trung điểm AB \(\Rightarrow I\left(1;1;1\right)\)
Pt mặt cầu:
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=62\)
\(\Leftrightarrow x^2+y^2+z^2-2x-2y-2z-59=0\)
4.
(P) nhận \(\left(2;-1;-1\right)\) là 1 vtpt
Phương trình (d) qua A và vuông góc (P): \(\left\{{}\begin{matrix}x=2+2t\\y=1-t\\z=4-t\end{matrix}\right.\)
Hình chiếu A' của A lên (P) là giao điểm d và (P) nên tọa độ thỏa mãn:
\(2\left(2+2t\right)-\left(1-t\right)-\left(4-t\right)+7=0\Rightarrow t=-1\)
\(\Rightarrow A'\left(0;2;5\right)\)
5.
Pt hoành độ giao điểm: \(lnx=0\Rightarrow x=1\)
Diện tích: \(S=\int\limits^e_1lnxdx-\int\limits^1_{\frac{1}{e}}lnxdx\)
Xét \(I=\int lnxdx\Rightarrow\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=x\end{matrix}\right.\)
\(\Rightarrow I=x.lnx-\int dx=xlnx-x\)
\(\Rightarrow S=\left(xlnx-x\right)|^e_1-\left(xlnx-x\right)|^1_{\frac{1}{e}}=1-\left(-1+\frac{2}{e}\right)=2-\frac{2}{e}\)
6.
Pt đường thẳng bị thiếu mẫu số đầu tiên
7.
Đề bài thiếu
1.
\(\left\{{}\begin{matrix}z_1+z_2=6\\z_1z_2=\left(3+2i\right)\left(3-2i\right)=13\end{matrix}\right.\)
\(\Rightarrow z_1;z_2\) là nghiệm của pt: \(z^2-6z+13=0\)
2.
\(\overrightarrow{BC}=\left(1;-2;-5\right)\)
Phương trình (P):
\(1\left(x-2\right)-2\left(y-1\right)-5\left(z+1\right)=0\)
\(\Leftrightarrow x-2y-5z-5=0\)
3.
\(I=\int\limits^0_{-1}x^2\left(x^2+2x+1\right)dx=\int\limits^0_{-1}\left(x^4+2x^3+x^2\right)dx=\left(\frac{1}{5}x^5+\frac{1}{2}x^4+\frac{1}{3}x^2\right)|^0_{-1}=\frac{1}{30}\)
Lời giải:
Mặt phẳng $(P)$ có \(\overrightarrow{n_P}=(2,-1,-2)\)
Mặt phẳng \((Oxy)\) có \(\overrightarrow{n_{Oxy}}=(0,0,1)\)
Do đó mà:
\(\cos \angle (P,Oxy)=\frac{|2.0+(-1).0+(-2).1|}{\sqrt{2^2+1^2+2^2}.\sqrt{0^2+0^2+1^2}}=\frac{2}{3}\)
Đáp án C