K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

Chọn D.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(h.8) Vì  ∆  tiếp xúc với S(O;R) tại M nên OM ⊥ ∆ tại M.

Xét tam giác OMA vuông tại M, ta có:

AM 2 = OA 2 - OM 2 = d 2 - R 2

Giải sách bài tập Toán 12 | Giải sbt Toán 12

3 tháng 4 2017

a) Gọi (P) là mặt phẳng chứa hai đường thẳng đã cho. Mặt phẳng (P) cắt mặt cầu S(O;r) theo một đường tròn tâm I, là hình chiếu vuông góc của O lên mặt phẳng (P).

Xét hai tam giác MAD và MCB có góc chung nên hai tam giác đó đồng dạng.

Vì vậy: => MA.MB = MC.MD.

b) Đặt MO = d, ta có Oi vuông góc với (P) và ta có:

MO2= MI2 = OI2 và OA2 = OI2 + IA2

Hạ IH vuông góc AB, ta có H là trung điểm của AB.

Ta có MA = MH - HA; MB = MH + HB = MH + HA.

Nên MA.MB =

MH2 – HA2 = (MH2 + HI2) – (HA2 + IH2)

= MI2 – IA2 = ( MI2 + OI2) – (IA2 + OI2)

= MO2 – OẢ2

= d2 – r2

Vậy MA.MB = d2 – r2


13 tháng 6 2019

Chọn A.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(h.10) Đường thẳng ∆ tiếp xúc với mặt cầu S(O;R) khi d = R.

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

19 tháng 11 2018

Chọn A.

Trong mặt phẳng (d,O), tam giác OMA vuông tại M có MH là đường cao nên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇒ H cố định

Vậy M thuộc mặt phẳng vuông góc với OA tại H.

Chọn C

1trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng MN 2 Bốn điểm A,B,C,D sau đây đồng phẳng. chọn đáp án sai A (1;1;-2), B(0;1;-1),C(3;-1;-2)D(-1;0-1) B A(0;0;5),B(1;1;10), C(1;0;7), D(-4;1;0) C A(1;1;-3),B(1;0;-2) C(5;1;1),D(1;1;5) D A(1;1;-1),b(3;6;0),c(3;0;-2),d(0;3;0) 3 Trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;4;-2) và \(\overline{b}\) (1;1;0) \(\overline{c}\) (1;1;1). trong các mệnh đề sau,...
Đọc tiếp

1trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng MN

2 Bốn điểm A,B,C,D sau đây đồng phẳng. chọn đáp án sai

A (1;1;-2), B(0;1;-1),C(3;-1;-2)D(-1;0-1)

B A(0;0;5),B(1;1;10), C(1;0;7), D(-4;1;0)

C A(1;1;-3),B(1;0;-2) C(5;1;1),D(1;1;5)

D A(1;1;-1),b(3;6;0),c(3;0;-2),d(0;3;0)

3 Trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;4;-2) và \(\overline{b}\) (1;1;0) \(\overline{c}\) (1;1;1). trong các mệnh đề sau, mệnh đề nào sai

A/\(\overline{a}\)/=\(\sqrt{2}\) B\(\overline{a}\perp\overline{b}\) C /\(\overline{c}\)/=\(\sqrt{3}\) D\(\overline{b}\perp\overline{c}\)

4 trong ko gian oxyz, cho hai vecto \(\overline{a}\) (2;4;-2) và \(\overline{b}\) (1;-2;3). tích vô hướng của hai vecto a và b là

5 trong ko gain với hệ tọa độ oxyz cho \(\overline{a}\) (1;-2;3) và \(\overline{b}\) (2;-1;-1 . khẳng định nào sau đây đúng

A[\(\overline{a,}\overline{b}\)]=(-5;-7;-3) B veto \(\overline{a}\) ko cùng phương với vecto \(\overline{b}\)

C vecto \(\overline{a}\) ko vuông góc với vecto \(\overline{b}\) D/\(\overline{a}\)/=\(\sqrt{14}\)

6 trong ko gian với hệ tọa độ oxyz, cho ba vecto \(\overline{a}\) (-1;1;0) và \(^{\overline{b}}\)(1;1;0), \(\overline{c}\)(1;1;1. trong các mệnh đề sau mệnh đề nào sai

A/\(\overline{a}\) /=\(\sqrt{2}\) B/\(\overline{c}\)/=\(\sqrt{3}\)

C \(\overline{a}\perp\overline{b}\) D\(\overline{c}\perp\overline{b}\)

7 trong ko gian với hệ trục oxyz , mặt cầu tâm I(1;-2;3) , bán kính R =2 có pt là

8 mặt cầu tâm I(2;2;-2) bán kính R tiếp xúc với mp (P):2x-3y-z+5=0. bán kính R là

9 trong ko gian với hệ tọa độ oxyz , mặt cầu (S), tâm I(1;2;-3) và đi qua A(1;0;4) có pt là

10 trong ko gian với hệ trục tọa độ oxyz, cho hai điểm A(-1;2;1), B(0;2;3). viết pt mặt cầu có đường kính AB

11 trong ko gian với hệ trục oxyz cho hai điểm M(6;2;-5),N(-4;0;7). viết pt mặt cầu đường kính MN

12 tro ko gian với hệ trục oxyz, cho điểm I(0;-3;0). viết pt mặt cầu tâm I và tiếp xúc với mp(oxz)

13 trong ko gian oxyz cho điểm M(1;1;-2) và mặt phẳng \(\alpha\) :x-y-2z=3 . viết pt mặt cầu S có tâm M tiếp xúc với mp \(\alpha\)

14 viết pt mặt cầu (S) có tâm I(-1;2;1) và tiếp xúc với mp (P):x-2y-2z-2=0

5
13 tháng 5 2020

câu 5 ấy chắc thầy tui buồn ngủ nên quánh lộn chữ sai thành đúng r

NV
13 tháng 5 2020

12.

\(R=d\left(I;Oxz\right)=\left|y_I\right|=3\)

Phương trình:

\(x^2+\left(y+3\right)^2+z^2=9\)

\(\Leftrightarrow x^2+y^2+z^2+6y=0\)

13.

\(R=d\left(M;\alpha\right)=\frac{\left|1-1+2.2-3\right|}{\sqrt{1^2+1^2+2^2}}=\frac{1}{\sqrt{6}}\)

Pt mặt cầu:

\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=\frac{1}{6}\)

14.

\(R=d\left(I;\left(P\right)\right)=\frac{\left|-1-4-2-2\right|}{\sqrt{1^2+2^2+2^2}}=3\)

Phương trình:

\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2=9\)

\(\Leftrightarrow x^2+y^2+z^2+2x-4y-2z-3=0\)

Câu 1 : Mặt cầu (S) có bán kính R = \(a\sqrt{2}\) . Tính diện tích của mặt cầu (S) A. \(8a^2\) B. \(4\Pi a^2\) C. \(8\Pi a^2\) D. \(16\Pi a^2\) Câu 2 : Công thức tính thể tích khối cầu có bán kính R ? A. \(\frac{4}{3}\Pi R^2\) B. \(\frac{4}{3}\Pi R^3\) C. \(\frac{1}{3}\Pi R^3\) D. \(\Pi R^3\) Câu 3 : Một hình hộp chữ nhật có ba kích thước...
Đọc tiếp

Câu 1 : Mặt cầu (S) có bán kính R = \(a\sqrt{2}\) . Tính diện tích của mặt cầu (S)

A. \(8a^2\) B. \(4\Pi a^2\) C. \(8\Pi a^2\) D. \(16\Pi a^2\)

Câu 2 : Công thức tính thể tích khối cầu có bán kính R ?

A. \(\frac{4}{3}\Pi R^2\) B. \(\frac{4}{3}\Pi R^3\) C. \(\frac{1}{3}\Pi R^3\) D. \(\Pi R^3\)

Câu 3 : Một hình hộp chữ nhật có ba kích thước tương ứng là a , 2a , 2a . Tính thể tích khối cầu ngoại tiếp hình hộp

A. \(\frac{9\Pi a^3}{5}\) B. \(\frac{9\Pi a^3}{4}\) C. \(9\Pi a^3\) D. \(\frac{9\Pi a^3}{2}\)

Câu 4 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a , AD = \(a\sqrt{3}\) . Cạnh bên SA vuông góc với đáy và SC tạo với đáy 1 góc 600 . Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.ABCD

A. Tâm là trung điểm SC , R = 2a

B. Tâm là trung điểm SC , R = 4a

C. Tâm trùng với tâm của đáy , R = a

D. Tâm là trung điểm SD , R = \(\frac{a\sqrt{15}}{2}\)

Câu 5 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , cạnh bên SA vuông góc với đáy , cạnh bên SB bằng \(a\sqrt{3}\) . Tính thể tích khối cầu ngoại tiếp S.ABCD

A. \(\frac{4}{3}\Pi a^3\) B. \(\frac{16\sqrt{2}}{3}a^3\) C. \(12\sqrt{3}a^3\) D. \(\frac{4}{3}a^3\)

HELP ME !!!!!!!!!!!!!

4
AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Câu 5:

Tương tự câu 4, ta thấy tâm $I$ của khối cầu ngoại tiếp $S.ABCD$ là trung điểm $SC$

Theo định lý Pitago:

$SA^2=SB^2-AB^2=(a\sqrt{3})^2-a^2=2a^2$

$AC^2=AB^2+BC^2=a^2+a^2=2a^2$

$SC=\sqrt{SA^2+AC^2}=\sqrt{2a^2+2a^2}=2a$

Do đó: $R=SI=IC=\frac{SC}{2}=a$

Thể tích khối cầu ngoại tiếp S.ABCD là:

$V=\frac{4}{3}\pi R^3=\frac{4}{3}\pi a^3$

Đáp án A

 

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Câu 4:

$AC=\sqrt{AB^2+AD^2}=2a$

$(SC, (ABCD))=\widehat{SCA}=60^0$

$\Rightarrow \frac{SA}{AC}=\tan \widehat{SCA}=\tan 60^0=\sqrt{3}$

$\Rightarrow SA=\sqrt{3}.AC=2\sqrt{3}a$

$SC=\sqrt{SA^2+AC^2}=\sqrt{(2\sqrt{3}a)^2+(2a)^2}=4a$

Gọi $I$ tâm mặt cầu ngoại tiếp hình chóp. $IS=IA=IC$ nên $I$ là tâm ngoại tiếp tam giác $SAC$

$\Rightarrow I$ là trung điểm $SC$.

Bán kính $IS=IC=\frac{AC}{2}=\frac{4a}{2}=2a$

Đáp án A

Câu 1 : Cho hình chóp có các cạnh bên bằng nhau và bằng a , độ dài đường cao bằng h . Tính bán kính mặt cầu ngoại tiếp hình chóp đã cho . A. R = \(\frac{a^2}{2h}\) B. R = \(\frac{2a^2}{h}\) C. R = \(\frac{2h^2}{a}\) D. R = \(\frac{h^2}{2a}\) Câu 2 : Cho hình chóp S.ABCD có cạnh đáy a , cạnh bên bằng \(\frac{a\sqrt{3}}{2}\) . Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD A....
Đọc tiếp

Câu 1 : Cho hình chóp có các cạnh bên bằng nhau và bằng a , độ dài đường cao bằng h . Tính bán kính mặt cầu ngoại tiếp hình chóp đã cho .

A. R = \(\frac{a^2}{2h}\) B. R = \(\frac{2a^2}{h}\) C. R = \(\frac{2h^2}{a}\) D. R = \(\frac{h^2}{2a}\)

Câu 2 : Cho hình chóp S.ABCD có cạnh đáy a , cạnh bên bằng \(\frac{a\sqrt{3}}{2}\) . Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD

A. \(\frac{3a}{2}\) B. \(\frac{a}{2}\) C. a D. \(\frac{3a}{4}\)

Câu 3 : Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = \(a\sqrt{2}\) , SA = SB = SC . Góc giữa SA và (ABC) bằng 600 . Tính diện tích mặt cầu ngoại tiếp S.ABC

A. \(\frac{16\Pi a^2}{9}\) B. \(\frac{16\Pi a^2}{3}\) C. \(4\Pi a^2\) D. \(\frac{64\Pi a^2}{3}\)

Câu 4 : Cho mặt cầu (S) có bán kính R = \(\sqrt{3}\) . Xét các điểm A ,B , C , D nằm trên mặt cầu (S) sao cho AB , AC , AD đôi một vuông góc với nhau . Thể tích khối tứ diện ABCD có giá trị lớn nhất bằng

A. \(\frac{8}{3}\) B. 8 C. 4 D. \(\frac{4}{3}\)

help me !!!!!!

3
NV
30 tháng 8 2020

4.

Gọi M là trung điểm CD, qua M kẻ đường thẳng song song AB

Gọi N là trung điểm AB, qua N kẻ đường thẳng song song AM

Gọi giao của 2 đường thẳng trên là O \(\Rightarrow\) O là tâm (S)

\(\Rightarrow AO=R=\sqrt{3}\)

Đặt \(AB=x;AC=y;AD=z\)

\(AN=\frac{AB}{2}=\frac{x}{2}\) ; \(AM=\frac{CD}{2}=\frac{1}{2}\sqrt{AC^2+AD^2}=\frac{1}{2}\sqrt{y^2+z^2}\)

Áp dụng Pitago: \(AO^2=AN^2+AM^2\)

\(\Rightarrow\frac{x^2}{4}+\frac{1}{4}\left(y^2+z^2\right)=3\Rightarrow x^2+y^2+z^2=12\)

\(V=\frac{1}{3}xyz\le\frac{1}{3}\left(\frac{x+y+z}{3}\right)^3\le\frac{1}{3}\left(\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\right)^3=\frac{8}{3}\)

NV
30 tháng 8 2020

2.

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)

\(AC=a\sqrt{2}\Rightarrow AO=\frac{1}{2}AC=\frac{a\sqrt{2}}{2}\)

\(SO=\sqrt{SA^2-OA^2}=\frac{a}{2}\)

Áp dụng công thức từ câu 1:

\(R=\frac{SA^2}{2SO}=\frac{3a}{4}\)

3.

\(BC=AB\sqrt{2}=2a\)

Gọi H là hình chiếu của S lên (ABC) \(\Rightarrow\) H đồng thời là tâm đường tròn ngoại tiếp đáy

\(\Rightarrow\) H là trung điểm BC

\(\Rightarrow\widehat{SAH}=60^0\Rightarrow SH=AH.tan60^0=\frac{BC}{2}tan60^0=a\sqrt{3}\)

\(SA=\frac{AH}{cos60^0}=2a\)

\(\Rightarrow R=\frac{SA^2}{2SH}=\frac{2\sqrt{3}a}{3}\)

\(S=4\pi R^2=\frac{16\pi a^2}{3}\)