K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

Chọn D.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(h.8) Vì  ∆  tiếp xúc với S(O;R) tại M nên OM ⊥ ∆ tại M.

Xét tam giác OMA vuông tại M, ta có:

AM 2 = OA 2 - OM 2 = d 2 - R 2

Giải sách bài tập Toán 12 | Giải sbt Toán 12

13 tháng 6 2019

Chọn A.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(h.10) Đường thẳng ∆ tiếp xúc với mặt cầu S(O;R) khi d = R.

19 tháng 11 2018

Chọn A.

Trong mặt phẳng (d,O), tam giác OMA vuông tại M có MH là đường cao nên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇒ H cố định

Vậy M thuộc mặt phẳng vuông góc với OA tại H.

13 tháng 8 2017

Chọn D.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(h.12) Gọi ( α ) là mặt phẳng chứa đường thẳng MO

Ta có: ( α ) cắt mặt cầu S(O;R) theo giao tuyến là đường tròn (C) có tâm O, bán kính R.

Trong mặt phẳng ( α ), từ điểm M nằm ngoài (C) ta luôn kẻ được hai tiếp tuyến M T 1 , M T 2  với đường tròn (C). Đây cũng là hai tiếp tuyến với mặt cầu S(O;R).

Nhận xét: Do có vô số mặt phẳng ( α ) chứa đường thẳng MO. Những mặt phẳng này cắt mặt cầu S(O;R) theo các giao tuyến là đường tròn khác nhau nên cũng có vô số tiếp tuyến với mặt cầu được kẻ từ điểm M nằm ngoài mặt cầu.

30 tháng 10 2018

Chọn A.

Đường thẳng Δ tiếp xúc với S( O; R) khi d = R.

6 tháng 6 2017

Chọn A.

Đường thẳng Δ tiếp xúc với S(O; R) khi d = R.

3 tháng 4 2017

a) Gọi (P) là mặt phẳng chứa hai đường thẳng đã cho. Mặt phẳng (P) cắt mặt cầu S(O;r) theo một đường tròn tâm I, là hình chiếu vuông góc của O lên mặt phẳng (P).

Xét hai tam giác MAD và MCB có góc chung nên hai tam giác đó đồng dạng.

Vì vậy: => MA.MB = MC.MD.

b) Đặt MO = d, ta có Oi vuông góc với (P) và ta có:

MO2= MI2 = OI2 và OA2 = OI2 + IA2

Hạ IH vuông góc AB, ta có H là trung điểm của AB.

Ta có MA = MH - HA; MB = MH + HB = MH + HA.

Nên MA.MB =

MH2 – HA2 = (MH2 + HI2) – (HA2 + IH2)

= MI2 – IA2 = ( MI2 + OI2) – (IA2 + OI2)

= MO2 – OẢ2

= d2 – r2

Vậy MA.MB = d2 – r2


11 tháng 3 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích tam giác BCD bằng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích này lớn nhất khi AI // CD.

22 tháng 7 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tam giác ADC vuông tại A nên AD 2 = DC 2 - AC 2  (1)

Tam giác ABC vuông tại A nên BC 2 = AC 2 + AB 2  (2)

Từ (1) và (2) ta suy ra AD 2 + BC 2 = DC 2 + AB 2  (3)

Ta lại có:

AC 2 = DC 2 - AD 2 và BD 2 = AD 2 + AB 2  (4)

DC 2 = 4 r 2 - h 2 ,   AB 2 = 4 h 2  (5)

Từ (4) và (5) ta có:

AC 2 + BD 2 = DC 2 + AB 2 = 4 r 2 - h 2 + 4 h 2 = 4 r 2  (6)

Từ (3) và (6) ta có:  AD 2 + BC 2  =  AC 2 + BD 2  (không đổi)