Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi H là hình chiếu của A trên tam giác, suy ra H là trung điểm BC.
\(AH=d\left(A,BC\right)=\dfrac{9}{\sqrt{2}}\)
a: vecto AB=(1;3)
vecto AC=(9;-3)
Vì vecto AB*vecto AC=1*9+3*(-3)=0
nên ΔABC vuông tại A
b: ABCD là hình chữ nhật
=>vecto AB=vecto DC
=>10-x=1 và -2-y=3
=>x=9 và y=-5
a) Xét tứ giác BEDC có:
∠BEC = 90o (CE là đường cao)
∠BDC = 90o (BD là đường cao)
=> Hai đỉnh D và E cùng nhìn cạnh BC dưới 1 góc vuông
=> Tứ giác BEDC là tứ giác nội tiếp
b) Xét ΔAEC và ΔADB có:
∠BAC là góc chung
∠AEC = ∠BDA = 90o
=> ΔAEC ∼ ΔADB (g.g)
\(\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\Rightarrow\text{AE.AB = AC.AD}\)
c) Ta có:
∠FBA = 90o (góc nội tiếp chắn nửa đường tròn)
=>FB⊥AB
Lại có: CH⊥AB (CH là đường cao)
=> CH // FB
Tương tự,( FCA) = 90o (góc nội tiếp chắn nửa đường tròn)
=>FC⊥AC
BH là đường cao => BH ⊥AC
=> FC // BH
Xét tứ giác CFBH có:
CH // FB
FC // BH
=> Tứ giác CFBH là hình bình hành.
Mà I là trung điểm của BC
=> I cũng là trung điểm của FH
Hay F, I, H thẳng hàng.
2) Diện tích xung quanh của hình trụ:
S = 2πRh = 2πR2 = 128π (do chiều cao bằng bán kính đáy)
=> R = 8 cm ; h = 8cm
Thể tích của hình trụ là
V = πR2 h = π.82.8 = 512π (cm3)
HÌNH TRONG THỐNG KÊ HỎI ĐÁP NHA VỚI LẠI MIK TRẢ LỜI TOÀN CÂU KHÓ MÀ CHẲNG CÓ CÁI GP NÀO
Lời giải:
Ta có: \(\overrightarrow{MA}=(a-3;-1); \overrightarrow{MB}=(-3;b-1)\)
Để tam giác MAB vuông tại M thì: \(\overrightarrow{MA}\perp \overrightarrow{MB}\Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB}=0\)
\(\Leftrightarrow -3(a-3)+(-1)(b-1)=0\)
\(\Leftrightarrow 3a+b=10\)
\(2S_{MAB}=|\overrightarrow{MA}|.|\overrightarrow{MB}|=\sqrt{(a-3)^2+1}.\sqrt{9+(b-1)^2}\)
\(=\sqrt{[(a-3)^2+1][9+(10-3a-1)^2}]=3\sqrt{[(a-3)^2+1][1+(a-3)^2]}=3[(a-3)^2+1]\geq 3\)
Vậy diện tích MAB nhỏ nhất khi \(a-3=0\Leftrightarrow a=3\)
\(a=3\Rightarrow b=10-3a=1\)
Vậy...........
Cho mặt cầu (S) có bán kính bằng 5. Xét khối tứ diện ABCD có các đỉnh đều thuộc mặt cầu (S) và tam giác ABC vuông cân tại B, DA = DB = DC. Thể tích khối tứ diện ABCD lớn nhất bằng a/b. Với a,b là các số nguyên dương và phân số a/b tối giản. Tính a + b.
A. 1173
B. 4081
C. 128
D. 5035
Cho mặt cầu (S) có bán kính bằng 5. Xét khối tứ diện ABCD có các đỉnh đều thuộc mặt cầu (S) và tam giác ABC vuông cân tại B, DA = DB = DC. Thể tích khối tứ diện ABCD lớn nhất bằng a/b. Với a,b là các số nguyên dương và phân số a/b tối giản. Tính a + b.
A. 1173
B. 4081
C. 128
D. 5035