Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị của tần số góc để dòng điện hiệu dụng trong mạch là cực đại ω 3 2 = 1 L C
, chuẩn hóa ω 3 2 = 1 L C = 1
Thay đổi L để điện áp hiệu dụng trên đoạn mạch chứa R và L cực đại
Z L 2 − Z C Z L − R 2 = 0 ⇔ R 2 = L 2 ω 1 2 − L C ⇒ R 2 L 2 = ω 1 2 − 1 L C = ω 1 2 − 1
Giá trị của tần số góc để điện áp hiệu dụng trên tụ điện đạt cực đại
ω 2 2 = 1 L C − R 2 2 L 2 = 1 − ω 1 2 − 1 2 = 3 2 − ω 1 2 2
Mặc khác ω 1 2 = 2 ω 2 2 ⇒ ω 2 2 = 3 2 − ω 2 2 ⇒ ω 2 = 3 2
Vậy phải tăng tần số lên 2 3 lần
Đáp án B
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Bài 1:
Để công suát tiêu thụ trê mạch cực đại thì:
\((R+r)^2=(R_1+r)(R_1+r)\)
\(\Rightarrow (R+10)^2=(15+10)(39+10)\)
\(\Rightarrow R=25\Omega\)
Bài 2: Có hình vẽ không bạn? Vôn kế đo hiệu điện thế của gì vậy?
\(U_c=IZ_c=\frac{U}{Z}.Z_c=\frac{U}{\sqrt{R^2+\left(Z_L-Z_C\right)^2}}.Z_c\)
\(=\frac{U}{\sqrt{R^2+Z_L^2}-2Z_LZ_C+Z_C^2}.Z_C=\frac{U}{\sqrt{1-\frac{2Z_L}{Z_C}+\frac{R^2+Z_L^2}{Z_C^2}}}\)
Đặt \(x=\frac{1}{Z_C}\) thì ta thu được hàm của Uc(x)
\(U_c=\frac{U}{\sqrt{\left(R^2+Z_L^2\right)x^2-2Z_Lx+1}}\)
Tìm x để Uc Max khi Mẫu min và khi \(x=-\frac{b}{2a}=\frac{2Z_L}{2.\left(R^2+Z_L^2\right)}=\frac{Z_L}{R^2+Z_{L^2}}\)
=> \(Z_C=\frac{R^2+Z_L^2}{Z_L}=\)
và Ucmax = \(U.\frac{\sqrt{R^2+Z_L^2}}{R}.\)
Bạn thay số và thu được kết quả
Chọn B
f = f1. → Zd = R 2 + Z L 1 2 =100Ω => R 2 + Z L 1 2 = 10 4
Khi UC = UCmax thì ZC1 = R 2 + Z L 1 2 Z L 1 => L C = R 2 + Z L 1 2 = 10 4 (*)
Khi f = f2; I = Imax trong mạch có cộng hưởng điện => ZC2 = ZL2
LC = 1 ω 2 2 = 1 4 π 2 f 2 2 (**)
Từ (*) và (**) => L2 = 10 4 4 π 2 f 2 2 => L = 10 2 2 πf 2 = 1 2 π = 0 , 5 π H
Đáp án A
Đặt
L thay đổi để URL max
(1)
Theo đề bài:
ω2 là giá trị để UCmax
(2)
Từ (1) và (2)
Cường độ dòng điện trong mạch đạt cực đại
=> Cần tăng tần số 2 3 3 lần so với f2.