K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020

a) Thay m vào phương trình, ta có:

\(\hept{\begin{cases}\sqrt{2}\times x+4y=10-\sqrt{2}\\x+\sqrt{2}\times y=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+4y=10-\sqrt{2}\\x=6-\sqrt{2}y\end{cases}}\)

Thay giá trị đã có của x vào phương trình

\(\sqrt{2}\times\left(6-\sqrt{2}y\right)+4y=10-\sqrt{2}\)

\(\Rightarrow y=5-\frac{7\sqrt{2}}{2}\)

Thay giá trị của y vào phương trình:

\(x=6-\sqrt{2}\times\left(5-\frac{7\sqrt{2}}{2}\right)\)

\(\Rightarrow x=13-5\sqrt{2}\)

9 tháng 10 2018

a) \(M=\frac{a+1}{\sqrt{a}}+\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{a\sqrt{a}\left(\sqrt{a}-1\right)+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)

\(M=\frac{a+1}{\sqrt{a}}+\frac{a+\sqrt{a}+1}{\sqrt{a}}+\frac{\left(a\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-a\sqrt{a}}\)

\(M=\frac{2a+\sqrt{a}+2}{\sqrt{a}}+\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)\left(1-\sqrt{a}\right)}\)

\(M=\frac{2a+\sqrt{a}+2}{\sqrt{a}}+\frac{a-\sqrt{a}+1}{\sqrt{a}}\)

\(M=\frac{3a+3}{\sqrt{a}}\)

Xét \(M-4=\frac{3a+3}{\sqrt{a}}-4=\frac{3a-4\sqrt{a}+3}{\sqrt{a}}=\frac{3\left(\sqrt{a}-\frac{2}{3}\right)^2+\frac{5}{3}}{\sqrt{a}}>0\forall x\in TXĐ\)

Vậy \(M>4.\)

b) \(N=\frac{6}{M}=\frac{6}{\frac{3a+3}{\sqrt{a}}}=\frac{2\sqrt{a}}{a+1}=\frac{2}{\sqrt{a}+\frac{1}{\sqrt{a}}}\)

Để N nguyên thì \(\sqrt{a}+\frac{1}{\sqrt{a}}\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Áp dụng bất đẳng thức Cosi cho hai số dương, ta có  \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\Rightarrow\sqrt{a}+\frac{1}{\sqrt{a}}=2\)

 \(\sqrt{a}+\frac{1}{\sqrt{a}}=2\Leftrightarrow a=1\)   (Vô lý)

Vậy không tồn tại giá trị của a để N nguyên.

chị quản lí làm sai rùi

a: Để M là số nguyên thì 5 chia hết cho căn a+1

=>căn a+1 thuộc {1;5}

=>a thuộc {0;4}

b: Khi a=4/9 thì \(M=1+\dfrac{5}{\dfrac{2}{3}+1}=1+5:\dfrac{5}{3}=1+3=4\)

=>M là số nguyên

c: \(\sqrt{a}+1>=1\)

=>\(\dfrac{5}{\sqrt{a}+1}< =5\)

=>M<=6

\(1< =\dfrac{5}{\sqrt{a}+1}< =5\)

=>2<=M<=6

M=2 khi \(\dfrac{5}{\sqrt{a}+1}+1=2\)

=>\(\dfrac{5}{\sqrt{a}+1}=1\)

=>căn a+1=5

=>căn a=4

=>a=16

M=3 khi \(\dfrac{5}{\sqrt{a}+1}=2\)

=>căn a+1=5/2

=>căn a=3/2

=>a=9/4

M=4 thì \(\dfrac{5}{\sqrt{a}+1}=3\)

=>căn a+1=5/3

=>căn a=2/3

=>a=4/9

\(M=5\Leftrightarrow\dfrac{5}{\sqrt{a}+1}=4\)

=>căn a+1=5/4

=>căn a=1/4

=>a=1/16

4 tháng 1 2018

với m = 0 \Rightarrow ∫y=104x=4∫x=4y=104

với m khác 0 \Rightarrow ∫x+my=4mx+4y=10−m∫mx+4y=10−mx+my=4

\Leftrightarrow ∫y=5m+2x=−m+8m+2∫x=−m+8m+2y=5m+2

b. vì x >0 , y>0 \Rightarrow ∫y=5m+2>0x=−m+8m+2>0∫x=−m+8m+2>0y=5m+2>0

\Rightarrow ∫−m+8>0m+2>0∫m+2>0−m+8>0

\Rightarrow ∫m<8m>−2∫m>−2m<8

\Rightarrow -2<m<8 

\Rightarrow m ={ -1;0;1;2;3;4;5;6;7}

c, y = −m+8m+2−m+8m+2 = -1 + 10m+210m+2

hệ có nghiệm x.y nguyên dương \Leftrightarrow m+2 là ước nguyên dương của 5 

\Leftrightarrow m+2 = 1 ; 5

m+2 = 1 \Rightarrow m = -1

m+2 = 5 \Rightarrow m =3

20 tháng 1 2018

ở câu c sao y lại bằng như vậy

DD
22 tháng 11 2021

a) Với \(m=0\): hệ phương trình đã cho tương đương với: 

\(\hept{\begin{cases}4y=10\\x=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=\frac{5}{2}\end{cases}}\)

Với \(m\ne0\): hệ có nghiệm duy nhất khi: 

\(\frac{m}{1}\ne\frac{4}{m}\Leftrightarrow m\ne\pm2\)

Hệ có vô số nghiệm khi: 

\(\frac{m}{1}=\frac{4}{m}=\frac{10-m}{4}\Leftrightarrow m=2\)

Hệ vô nghiệm khi: 

\(\frac{m}{1}=\frac{4}{m}\ne\frac{10-m}{4}\Leftrightarrow m=-2\).

b) với \(m\ne\pm2\)hệ có nghiệm duy nhất. 

\(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\\x=4-my\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{8-m}{m+2}\\y=\frac{5}{m+2}\end{cases}}\)

\(\hept{\begin{cases}\frac{8-m}{m+2}>0\\\frac{5}{m+2}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}8-m>0\\m+2>0\end{cases}}\Leftrightarrow-2< m< 8\)

c) \(\hept{\begin{cases}\frac{8-m}{m+2}=\frac{10-m-2}{m+2}=\frac{10}{m+2}-1\inℤ\\\frac{5}{m+2}\inℤ\end{cases}}\Leftrightarrow\frac{5}{m+2}\inℤ\)

\(\frac{5}{m+2}=t\inℤ\Rightarrow m=\frac{5}{t}-2\)

Để \(x,y\)dương thì \(-2< \frac{5}{t}-2< 8\Leftrightarrow0< \frac{5}{t}< 10\Rightarrow t\ge1\)

Vậy \(m=\frac{5}{t}-2\)với \(t\)nguyên dương thì thỏa mãn ycbt.