Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1+2018)+2018^2(1+2018)+...+2018^2016(1+2018)
=2019(1+2018^2+...+2018^2016) chia hết cho 2019
=>A chia 2019 dư 0
a) Ta có: \(M=3+3^2+3^3+...+3^{2017}+3^{2018}+3^{2019}\)
\(=3.\left(1+3+3^2+3^3+...+3^{2016}+3^{2017}+3^{2018}\right)\)
\(\Rightarrow M⋮3\)
_Học tốt_
\(3n+1⋮n-1\)
\(\Rightarrow3.\left(n-1\right)+4⋮n-1\)
Vì \(3.\left(n-1\right)⋮n-1\)=> \(4⋮n-1\)
Hay \(n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Ta có bảng sau :
n-1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
Vậy ....
\(B=20182018\cdot2019-20192019\cdot2018+2019-2018\\ B=10001\cdot2018\cdot2019-10001\cdot2019\cdot2018+2019-2018\\ B=2019-2018=1\)
B = 20182018 . 2019 - 20192019 . 2018 + 2019 - 2018.
20182018 = 20180000 + 2018
= 2018 . 10000 + 2018 . 1
= 2018 . (10000 + 1)
= 2018 . 10001
20192019 = 20190000 + 2019
= 2019 . 10000 + 2019 . 1
= 2019 . (10000 + 1)
= 2019 . 10001
B = 20182018 . 2019 - 20192019 . 2018 + 2019 - 2018
B = (2018 . 10001 . 2019 - 2019 . 10001 . 2018) + (2019 - 2018)
B = 0 + 1
B = 1
\(M=\left(2018+2018^2\right)+\left(2018^3+2018^4\right)+...+\left(2018^{2017}+2018^{2018}\right)\)
\(=2018\left(1+2018\right)+2018^3\left(1+2018\right)+...+2018^{2017}\left(1+2018\right)\)
\(=2018.2019+2018^3.2019+...+2018^{2017}.2019\)
\(=2019\left(2018+2018^3+...+2018^{2017}\right)⋮2019\)
b/ \(M=2018+2018^2+...+2018^{2018}\)
\(2018M=2018^2+2018^3+...+2018^{2018}+2018^{2019}\)
Lấy dưới trừ trên:
\(2018M-M=-2018+2018^{2019}\)
\(\Rightarrow2017M=2018^{2019}-2018\)
\(\Rightarrow M=\frac{2018^{2019}-2018}{2017}=\frac{2018^{2019}}{2017}-\frac{2017+1}{2017}=\frac{2018^{2019}}{2017}-1-\frac{1}{2017}\)
\(\Rightarrow M=N-\frac{1}{2017}\Rightarrow M< N\)
Cảm ơn bạn đã giúp mình