Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}x_1+x_2+x_3+...+x_{2016}+x_{2017}=0\\x_1+x_2=x_3+x_4=x_5+x_6=...=x_{2015}+x_{2016}=x_{2016}+x_{2017}=1\end{matrix}\right.\)
Từ \(x_1+x_2+x_3+...+x_{2016}+x_{2017}=0\)
\(\Rightarrow\left(x_1+x_2\right)+\left(x_3+x_4\right)+...+\left(x_{2015}+x_{2016}\right)+x_{2017}=0\)
\(\Rightarrow1+1+...+1+x_{2017}=0\)
\(\Rightarrow1008+x_{2017}=0\Leftrightarrow x_{2017}=-1008\)
Mà \(x_{2016}+x_{2017}=1\Leftrightarrow x_{2016}=1-x_{2017}=1009\)
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !
Đề sai rồi! Sửa đề: Cho \(S_1=\dfrac{b}{a}x+\dfrac{c}{a}z...\)
Giải:
Ta có:
\(S_1+S_2+S_3=\left(\dfrac{b}{a}x+\dfrac{c}{a}z\right)+\left(\dfrac{a}{b}x+\dfrac{c}{b}y\right)\)\(+\left(\dfrac{a}{c}z+\dfrac{b}{c}y\right)\)
\(=\left(\dfrac{b}{a}x+\dfrac{a}{b}x\right)+\left(\dfrac{c}{b}y+\dfrac{b}{c}y\right)+\left(\dfrac{c}{a}z+\dfrac{a}{c}z\right)\)
\(=\left(\dfrac{b}{a}+\dfrac{a}{b}\right)x+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)y+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)z\)
Dễ thấy: \(\left\{{}\begin{matrix}\dfrac{b}{a}+\dfrac{a}{b}\ge2\\\dfrac{c}{b}+\dfrac{b}{c}\ge2\\\dfrac{c}{a}+\dfrac{a}{c}\ge2\end{matrix}\right.\)
\(\Rightarrow S_1+S_2+S_3\ge2x+2y+2z\)
\(=2\left(x+y+z\right)=2.1008=2016\)
Vậy \(S_1+S_2+S_3\ge2016\) (Đpcm)
c,
=> (2x-1)^2015 . [(2x-1)^2 - 1] = 0
=> 2x-1=0 hoặc (2x-1)^2-1 = 0
=> x=1/2 hoặc x=1 hoặc x=0
Tk mk nha
Con tham khảo bài tương tự tại link dưới đây nhé:
Câu hỏi của Đặng Trọng Hoàng - Toán lớp 6 - Học toán với OnlineMath
Ta có:
x1 + x2 + x3 + ... + x2015 + x2016 + x2017 = (x1 + x2 + x3 + ... + x2015 + x2016) +x2017=0
=[ (x1 + x2 + x3) + ...... + (x2014+x2015 + x2016) ] + x2017 = ( 1 + 1 +1 + ......... + 1 ) + x2017=0
[ (x1 + x2 + x3) + ...... + (x2014+x2015 + x2016) ] có : (2016-1)+1:3=672(nhóm)
=>( 1 + 1 +1 + ......... + 1 ) + x2017= 672 + x2017 = 0
=> x2017=0-672=-672
Vậy x2017=-672