Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A\left(x_A;y_A\right);B\left(x_B;y_B\right);C\left(x_C;y_C\right)\).
\(\overrightarrow{MN}\left(1;2\right)\); \(\overrightarrow{BP}\left(-x_B;-4-y_B\right)\).
MN là đường trung bình của tam giác ABC nên: \(\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{BC}=\overrightarrow{BN}\).
Vì vậy \(\left\{{}\begin{matrix}-x_B=1\\-4-y_B=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_B=-1\\y_B=-6\end{matrix}\right.\)\(\Leftrightarrow B\left(-1;-6\right)\).
\(\overrightarrow{NP}\left(-2;-7\right)\); \(\overrightarrow{AM}\left(1-x_A;1-y_A\right)\).
NP là đường trung bình của tam giác ABC nên:
\(\overrightarrow{NP}=\dfrac{1}{2}\overrightarrow{AB}=\overrightarrow{AM}\).
Vì vậy \(\left\{{}\begin{matrix}1-x_A=-2\\1-y_A=-7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_A=3\\y_A=8\end{matrix}\right.\)\(\Rightarrow A\left(3;8\right)\).
Do M là trung điểm của AB nên:
\(\dfrac{x_A+x_B}{2}=x_M\Rightarrow x_B=2x_M-x_A=2.1-3=-1\).
\(\dfrac{y_A+y_B}{2}=y_M\Rightarrow y_B=2y_M-y_A=2.1-8=-6\).
Vậy \(B\left(-1;-6\right)\).
bạn ơi, cách làm của bạn thì ok lắm nhưng theo mình thì có vẻ bạn đang nhầm đề bài á??... ví dụ ở đề bài M là trung điểm của BC nhưng trong hình vẽ của bạn điểm M lại là trung điểm của AB mất rồi!!! Đó là suy nghĩ của mình thoii, nếu như không hợp lý thì mình xin lỗi :))
Tam giác ABC có M; N; P lần lượt là trung điểm của BC; AC ; AB nên PN và MN là đường trung bình của tam giác.
Suy ra: PN// BC và MN// AB.
Khi đó, tứ giác PNMB là hình bình hành.
Do đó, P B → = N M → với P B → ( x + 1 ; y − 3 ) ; N M → ( 0 ; − 2 )
⇒ x + 1 = 0 y − 3 = − 2 ⇔ x = − 1 y = 1 ⇒ B ( − 1 ; 1 )
Đáp án C
A’ là trung điểm của cạnh BC nên -4 = (xB+ xC)
=> xB+ xC = -8 (1)
Tương tự ta có xA+ xC = 4 (2)
xB+ xC = 4 (3)
=> xA+ xB+ xC =0 (4)
Kết hợp (4) và (1) ta có: xA= 8
(4) và (2) ta có: xB= -4
(4) và (3) ta có: xC = -4
Tương tự ta tính được: yA = 1; yB = -5; yC = 7.
Vậy A(8;1), B(-4;-5), C(-4; 7).
Gọi G la trọng tâm tam giác ABC thì
xG= = 0; yG = = 1 => G(0,1).
xG’= ; yG’ = = 1 => G'(0;1)
Rõ ràng G và G’ trùng nhau.
Theo tích chất đường trung bình trong một tam giác ta có: \(\overrightarrow {PN} = \overrightarrow {BM} = \overrightarrow {MC} \) và \(\overrightarrow {MP} = \overrightarrow {NA} \)
Gọi \(A\left( {{a_1},{a_2}} \right),B\left( {{b_1};{b_2}} \right),C\left( {{c_1};{c_2}} \right)\)
Ta có: \(\overrightarrow {PN} = \left( {2;3} \right)\),\(\overrightarrow {BM} = \left( {1 - {b_1}; - 2 - {b_2}} \right)\), \(\overrightarrow {MC} = \left( {{c_1} - 1;{c_2} + 2} \right)\), \(\overrightarrow {MP} = \left( {5;4} \right)\), \(\overrightarrow {NA} = \left( {{a_1} - 4;{a_2} + 1} \right)\)
Có \(\overrightarrow {PN} = \overrightarrow {BM} \Leftrightarrow \left\{ \begin{array}{l}2 = 1 - {b_1}\\3 = - 2 - {b_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b_1} = - 1\\{b_2} = - 5\end{array} \right.\) .Vậy \(B\left( { - 1; - 5} \right)\)
Có \(\overrightarrow {PN} = \overrightarrow {MC} \Leftrightarrow \left\{ \begin{array}{l}2 = {c_1} - 1\\3 = {c_2} + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{c_1} = 3\\{c_2} = 1\end{array} \right.\) .Vậy \(C\left( {3;1} \right)\)
Có \(\overrightarrow {NA} = \overrightarrow {MP} \Leftrightarrow \left\{ \begin{array}{l}5 = {a_1} - 4\\4 = {a_2} + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a_1} = 9\\{a_2} = 3\end{array} \right.\) .Vậy \(A\left( {9;3} \right)\)
A’ là trung điểm của BC
B’ là trung điểm của AC
C’ là trung điểm của BA
Gọi G là trọng tâm ΔABC và G’ là trọng tâm ΔA’B’C’
Ta có :
Vậy G ≡ G’ (đpcm)
Đáp án C