K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

+ta có n là số tự nhiên lẻ =>24^n có chữ số tận cùng là 24 (cái này xem kĩ hơn về phần tính chất chia hét của lũy thừa nhé)

=>24^n+1 có chữ số tận cùng là 25 ( vì số chữ số tận cùng nào thì chia hết cho số đó =>25 chia hết 25)
 + ta có 24:23 (có dư là 1) =>24^n :23 (dư 1 )=>24^n+1 :23 (dư 2) => 24^n+1 k chia hết cho 23 

24 tháng 4 2020

Bài này dễ mà bn

8 tháng 1 2021

Ta có: \(\hept{\begin{cases}m^2+2⋮n\\n^2+2⋮m\end{cases}}\Rightarrow\left(m^2+2\right)\left(n^2+2\right)⋮mn\Rightarrow m^2n^2+2\left(m^2+n^2+2\right)⋮mn\)

Dễ có \(m^2n^2⋮mn\)nên \(2\left(m^2+n^2+2\right)⋮mn\)

Mà m,n lẻ nên mn lẻ hay \(\left(mn,2\right)=1\)suy ra \(m^2+n^2+2⋮mn\)(*)

Ta có đánh giá rằng số chính phương lẻ thì chia 4 dư 1 (Thật vậy xét các trường hợp 4k + 1 và 4k + 3)

\(\Rightarrow\)m2, n2 chia 4 dư 1 \(\Rightarrow m^2+n^2+2⋮4\)(**)

Từ (*) và (**) suy ra \(m^2+n^2+2⋮4mn\)(Do \(\left(mn,4\right)=1\))

13 tháng 11 2018

post lại đề,khó jiểu quá 

29 tháng 11 2018

cho m,n là các số nguyên dương thỏa mãn

 mn+1 chia hết cho 24 cm m+n chia hết cho 24

6 tháng 8 2019

Giả sử trong hai số a, b không đồng thời chia hết cho 3 

=> a+b không chia hết cho 3 => m+2n+n+2m=3(m+n) không chia hết cho 3 ( vô lí ) 

=> điều giả sử sai => đpcm 

6 tháng 11 2015

tick cho mình đi đã rồi mình bày cho nếu khôn thì đừng mơ nhé

29 tháng 5 2023

a.

Giả sử trong hai số x,y có một số chẵn; vai trò x,y như nhau; không mất tính tổng quát giả sử x chẵn ta có \(\left(xy\right)⋮2\)

Mà \(\left(x^2+y^2+10\right)⋮xy\)  nên \(\left(x^2+y^2+10\right)⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)

Ta có \(xy⋮4\)

Do đó \(\left(x^2+y^2+10\right)⋮4\).

Mà \(x^2⋮4,y^2⋮4\)  nên \(10⋮4\)  (Điều này vô lý)

=> Giả sử trên là sai. Vậy x,y là hai số lẻ.

Đặt \(d=ƯCLN\left(x,y\right)\)

Ta có: \(x=da,b=db\) với a, b, d \(\in N\)* và \(ƯCLN\left(a,b\right)=1\)

Có: \(\left(d^2a^2+d^2b^2+10\right)⋮\left(d^2ab\right)\Rightarrow\left(d^2a^2+d^2b^2+10\right)⋮d^2\Rightarrow10⋮d^2\Rightarrow d=1\)

Vậy \(ƯCLN\left(x,y\right)=1\)

b. Theo đề suy ra \(kxy=x^2+y^2+10\)

Vì x,y là số lẻ nên \(\left(x+1\right)\left(x-1\right)⋮4;\left(y+1\right)\left(y-1\right)⋮4\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^2-1\right)⋮4\\\left(y^2-1\right)⋮4\end{matrix}\right.\)

Có: \(x^2+y^2+10=x^2-1+y^2-1+12\) chia hết cho 4 nên \(kxy⋮4\)

Mà ƯCLN \(\left(xy,4\right)=1\Rightarrow k⋮4\)

Giả sử trong 2 số x,y có một số chia hết cho 3; vai trò của x, y là như nhau, không mất tính tổng quát giả sử \(x⋮3\) . Ta có \(\left(xy\right)⋮3\)

Mà \(\left(x^2+y^2+10\right)⋮\left(xy\right)\)

Nên \(\left(x^2+y^2+10\right)⋮3\)  \(\Rightarrow\left(y^2+10\right)⋮3\Rightarrow\left(y^2+1\right)⋮3\Rightarrow\) \(y^2\) chia cho 3 dư 2 (Điều này vô lý)

=> Giả sử trên là sai. Vậy x,y là hai số không chia hết cho 3.

\(\RightarrowƯCLN\left(xy,3\right)=1\)\(x^2\) và \(y^2\) chia cho 3 dư 1.

Do đó \(\left(x^2+y^2+10\right)⋮3\)  nên \(kxy⋮3\)  mà \(ƯCLN\left(xy,3\right)=1\Rightarrow k⋮3,k⋮4\)

\(ƯCLN\left(3,4\right)=1.3.4=12\Rightarrow k⋮12\)

Mà \(k\in N\)* nên \(k\ge12\)

13 tháng 10 2022

b: Đề sai với n=1

a: \(A=16^n-1=\left(16-1\right)\cdot B=15\cdot B⋮15\)

2 tháng 9 2017

a)Ta có : 

\(n^3-13n\) = \(n^3-12n-n\)\(=n\left(n^2-1\right)-12n\)\(=n.\left(n-1\right)\left(n+1\right)-6.2n\)

* n ; n-1 và n+1 là 3 số nguyên liên tiếp nên n.(n-1)(n+1) chia hết cho 6 vs 6.2n cũng chia hết cho 6

\(\Rightarrow\) n\(^3\)-13n chia hết cho 6

b)Ta có :A=n\(^5\)−5n\(^3\)+4\(n\)=n(n\(^4\)−5n\(^2\)+4)=n[n\(^2\)(n\(^2\)−1)−4(n\(^2\)−1)]=n(n\(^2\)−1)(n\(^2\)−4)=(n−2)(n−1)n(n+1)(n+2)

Vì (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) là tích 5 số nguyên liên tiếp nên chia hết cho 5 (1)

    (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) chứa tích của 3 số nguyên liên tiếp nên chia hết cho 3 (2)

    (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) chứa tích của 2 số chẵn liên tiếp nên chia hết cho 8 (3)

 Mà (3;5;8) =1  (4)

Từ (1) , (2) , (3) , (4) => A⋮(3.5.8)

                                 => A⋮120

c) Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm). 

2 tháng 9 2017

Đề bài c sai r nha bn