Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{\left(a+b\right)}{2}=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
<=> \(a+b\le1\)
\(P=\frac{1}{a^2+b^2+2}+\frac{1}{ab}\ge\frac{1}{\frac{\left(a+b\right)}{2}+2}+\frac{1}{\frac{\left(a+b\right)^2}{4}}\ge\frac{1}{\frac{1}{2}+2}+\frac{1}{\frac{1}{4}}=\frac{22}{5}\)
Dấu = xảy ra <=> a = b = 1/2
vì a;b>0\(\Rightarrow a+b>=2\sqrt{ab}\Rightarrow1>=2\sqrt{ab}\Rightarrow\frac{1}{2}>=\sqrt{ab}\Rightarrow\frac{1}{4}>=ab\)(bđt cosi)
dấu = xảy ra khi a=b=\(\frac{1}{2}\)
\(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2=1+\frac{2}{a}+\frac{1}{a^2}+1+\frac{2}{b}+\frac{1}{b^2}\)
\(=2+\left(\frac{2}{a}+\frac{2}{b}\right)+\left(\frac{1}{a^2}+\frac{1}{b^2}\right)>=2+2\sqrt{\frac{2}{a}\cdot\frac{2}{b}}+2\cdot\sqrt{\frac{1}{a^2}\cdot\frac{1}{b^2}}\)(bđt cosi )
dấu = xảy ra khi \(\frac{2}{a}=\frac{2}{b}\Rightarrow a=b=\frac{1}{2};\frac{1}{a^2}=\frac{1}{b^2}\Rightarrow a=b=\frac{1}{2}\)\(\Rightarrow\)dấu = xảy ra khi \(a=b=\frac{1}{2}\)
\(=2+\frac{4}{\sqrt{ab}}+\frac{2}{\sqrt{a^2b^2}}=2+\frac{4}{\sqrt{ab}}+\frac{2}{ab}>=2+\frac{4}{\frac{1}{2}}+\frac{2}{\frac{1}{4}}=2+8+8=18\)
\(\Rightarrow M>=18\Rightarrow\)min M là 18
vậy min M là 18 khi a=b=\(\frac{1}{2}\)
Áp dụng bđt Cauchy-Schwarz dạng Engel ta có :
\(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2=\frac{\left(1+\frac{1}{a}\right)^2}{1}+\frac{\left(1+\frac{1}{b}\right)^2}{1}\ge\frac{\left(1+\frac{1}{a}+1+\frac{1}{b}\right)^2}{2}=\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)}{2}\)(1)
Lại có \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\)(2)
Từ (1) và (2) => \(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)
Đẳng thức xảy ra khi a = b = 1/2
Vậy MinM = 18, đạt được khi a = b = 1/2
1)cho x,y thoả mãn 2x^2+1/x^2+y^2/4=4
tìm GTNN T=xy
2)
cho a,b>0 va a+b=1
tìm GTNN M=(1+1/a)^2+(1+1/b)^2
Cauchy Schwars
\(M\ge\frac{\left(1+1+1\right)^2}{\left(a+b+c\right)^2}=\frac{9}{\left(a+b+c\right)^2}\ge9\Rightarrow M_{min}=9\Leftrightarrow a=b=c=\frac{1}{3}\)
\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)
Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)
Vay \(M_{min}=9\)
Do a ; b > 0 , áp dụng BĐT Cô - si cho 2 số dương , ta có :
\(A=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge2\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)\)
\(\Rightarrow2\left[\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\right]\ge\left(a+\frac{1}{a}+b+\frac{1}{b}\right)^2\)
\(\Rightarrow2A\ge\left(1+\frac{1}{a}+\frac{1}{b}\right)^2\)
Vì a ; b > 0 \(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow2A\ge\left(1+\frac{4}{a+b}\right)^2=\left(1+4\right)^2=25\)
\(\Rightarrow A\ge\frac{25}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
giúp vs ae ơi
ta có ĐKXĐ:
a≠0
⇒(1+a/a+1):a/aʌ2+a
⇒1+2a/a:a/aʌ2+a
⇒(1+2a)aʌ2+a
⇒3a(aʌ2+a)
=3aʌ3+3aʌ2