Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1 + 2 + 3 + ... + 31 + 32) : 11 + 2
= [(32 + 1).(32 - 1 + 1) : 2] : 11 + 2
= (33 . 32 : 2) : 11 + 2
= 33 . 16 : 11 + 2
= 3 . 16 + 2
= 48 + 2
= 50
a, 33.( 17- 5) - 17.( 33-5)
= 33.17 - 33.5 - 17.33 + 17.5
= ( 33.17 - 17.33) - ( 33.5 - 17.5)
= 0 - 5.( 33- 17)
= - 5. 16
= - 80
b, 12 + 3.{ 90 : [ 39 - ( 23 - 5)2]
= 12 + 3. { 90 : [ 39 - ( 8-5)2 ]}
= 12 + 3 . { 90 : [ 39 - 32 ]}
= 12 + 3.{ 90 : (39 -9)}
= 12 + 3. { 90 : 30}
= 12 + 3 . 3
= 12 + 9
= 21
c, 307 - [ (180 .40 - 160 ) : 22 + 9] : 2
= 307 - [ ( 180 - 160) : 4 + 9]:2
= 307 - [ 20:4 +9 ] :2
= 307 - [ 5 + 9] : 2
= 307 - 14 : 2
= 307 - 7
= 300
a) Ta có: 2x+33=-11
nên 2x=-44
hay x=-22
b) Ta có: \(\dfrac{x}{2}=\dfrac{-49}{14}\)
nên x=-7
c) Ta có: \(\dfrac{5}{6}x+\dfrac{10}{3}=\dfrac{7}{2}\)
nên \(\dfrac{5}{6}x=\dfrac{7}{2}-\dfrac{10}{3}=\dfrac{1}{6}\)
hay \(x=\dfrac{1}{6}:\dfrac{5}{6}=\dfrac{1}{5}\)
\(\dfrac{2}{3}+\dfrac{1}{3}:x=\dfrac{1}{2}\)
\(\dfrac{1}{3}:x=\dfrac{1}{2}-\dfrac{2}{3}\)
\(\dfrac{1}{3}:x=-\dfrac{1}{6}\)
\(x=\dfrac{1}{3}:\left(-\dfrac{1}{6}\right)\)
\(x=-2\)
Vậy ...
#AvoidMe
Ta có:
\(1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{100}\right)-\left(1+3+3^2+...+3^{99}\right)\)
\(\Rightarrow2S=3^{100}-1\)
\(\Rightarrow2S+1=3^{100}-1+1=3^{100}\)
\(\Rightarrow2S+1\) là lũy thừa của 3
\(B=3^1+3^2+3^3+...+3^{100}\\3B=3^2+3^3+3^4+...+3^{101}\\3B-B=(3^2+3^3+3^4+...+3^{101})-(3^1+3^2+3^3+...+3^{100})\\2B=3^{101}-3\\\Rightarrow 2B+3=3^{101}\)
Mặt khác: \(2B+3=3^n\)
\(\Rightarrow 3^n=3^{101}\\\Rightarrow n=101(tm)\)
Vậy n = 101.
Ta có: 3A = 3.(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−1
⇒ A = 3101−1
2
Vậy A = 3101−1
2
Ta có 3M = 3 + 32 + 33 + 34 +...+ 326 => 3M - M = 3 + 32 + 33 + 34 +...+ 326 - ( 1 + 3 + 32 + 33 +...+ 325 ) = 325 - 1 => M = \(\frac{3^{25}-1}{2}\)