Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M > 0 <=> x(x - 3) > 0
Xét 2 trường hợp
Trường hợp 1: x > 0 và x - 3 > 0 => x > 3
Trường hợp 2: x < 0 và x - 3 < 0 => x < 0
Vậy với x > 3 và x < 0 thì M > 0
a, M = 0
<=> x hoặc x-4 = 0
=> x = 0 hoặc x = 4
b, M > 0
<=> x và x-4 cùng dấu
<=> x > 0 và x - 4 > 0 hoặc x < 0 và x - 4 < 0
=> x > 0 và x > 4 hoặc x < 0 và x < 4
=> x > 4 hoặc x < 0
c, M < 0
<=> x và x - 4 khác dấu
Mà x - 4 < x
=> x > 0 và x - 4 < 0
=> x > 0 và x < 4
=> 0 < x < 4
a)
Với A=0
\(\Rightarrow x\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
với A<0
\(\Rightarrow x\left(x-4\right)< 0\)
\(th1\orbr{\begin{cases}x< 0\\x-4>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 0\\x>4\end{cases}\Leftrightarrow4< x< 0\left(vl\right)}\)
\(th2\orbr{\begin{cases}x>0\\x-4< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>0\\x< 4\end{cases}\Leftrightarrow0< x< 4\left(tm\right)}\)
\(\Leftrightarrow0< x< 4\Leftrightarrow x\in\left\{1;2;3\right\}\)
Với A>0
\(\Rightarrow x\left(x-4\right)>0\)
\(th1\orbr{\begin{cases}x>0\\x-4>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>0\\x>4\end{cases}}\Leftrightarrow x>4\)
\(th2\orbr{\begin{cases}x< 0\\x-4< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 0\\x< 4\end{cases}}\Leftrightarrow x< 0\)
b)
Với B=0
\(\Rightarrow\frac{x-3}{x}=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\Rightarrow x=3\\x=0\left(l\right)\end{cases}}\)
vậy x=3 thì B = 0
Với B < 0
\(\Rightarrow\frac{x-3}{x}< 0\)
\(th1\orbr{\begin{cases}x-3>0\\x< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>3\\x< 0\end{cases}\Leftrightarrow3< x< 0\left(vl\right)}\)
\(th2\orbr{\begin{cases}x-3< 0\\x>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 3\\x>0\end{cases}\Leftrightarrow0< x< 3\left(tm\right)\Leftrightarrow x\in\left\{1;2\right\}}\)
Với B > 0
\(th1\orbr{\begin{cases}x-3>0\\x>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>3\\x>0\end{cases}\Leftrightarrow x>3}\)
\(th2\orbr{\begin{cases}x-3< 0\\x< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< 0\end{cases}\Leftrightarrow x< 0}\)
Để M > 0
Xét 2 trường hợp
TH1 : \(\hept{\begin{cases}x>0\\x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>3\end{cases}}\Leftrightarrow x>3\)
TH2 : \(\hept{\begin{cases}x< 0\\x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< 3\end{cases}}\Leftrightarrow x< 0\)
Vậy x > 3 hoặc x < 0 thì M > 0
a) M=0 khi x = 0
b)M>0 khi x>3
c)M<0 khi .... ko bít nữa, mình ko rảnh, sorry!
a) Khi M = 0 \(\Leftrightarrow x.\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
Vậy khi x = 0 hoặc x = 3 thì M = 0
b) \(M< 0\Leftrightarrow x.\left(x-3\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x-3< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-3>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x>3\end{cases}}\) (loại)
Vậy \(0< x< 3\) thì M < 0
ta có M = x.(x-3)
= \(x^2-3x\)
nếu M = 0 thì \(x^2-3x=0\)
= \(x\left(x-3\right)=0\)
= \(\orbr{\begin{cases}x=0\\x-3=0=>x=3\end{cases}}\)
nếu M < 0 thì \(x^2-3x< 0\)
= \(x\left(x-3\right)< 0\)
= \(\orbr{\begin{cases}x< 0\\x-3< 0=>x< 3\end{cases}}\)